Skip to main content

Efficacy of Algae in the Bioremediation of Pollutants during Wastewater Treatment: Future Prospects and Challenges

  • Chapter
  • First Online:
Biotechnological Innovations for Environmental Bioremediation

Abstract

Every nation wants to focus on reducing their carbon footprints and improve the ecological status of water quality, in particular by reducing the amount of nitrogen (N) and phosphorus (P) concentration in wastewater effluent. There are many technologies and materials which can treat the wastewater, but in recent years, algae have received huge attention in their use as a part of wastewater treatment. The mechanism is that algae use the inorganic nitrogen and phosphorus for their growth and generate biomass which can be used as a raw material for secondary process. This chapter aimed to focus on the importance of the algae for wastewater treatment by reducing N, P, chemical oxygen demand (COD), biochemical oxygen demand (BOD), heavy metals (HMs), and other parameters. Many types of wastewaters can be treated with the help of algae. Here, in this chapter, the principles of wastewater and bioremediation with various treatment strategies for the different types of wastewater parameters and the abiotic and biotic factors that affect the mechanism of the algae for treating the wastewater will be introduced. This chapter also describes the mechanisms involved in the treatment of different types of pollutants and the future prospects and challenges related to this particular approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abreu-Acosta N, Vera L (2011) Occurrence and removal of parasites, enteric bacteria and faecal contamination indicators in wastewater natural reclamation systems in Tenerife-Canary Islands, Spain. Ecol Eng 37(3):496–503

    Article  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremed Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Ahmad F, Iftikhar A, Ali AS, Shabbir SA, Wahid A, Mohy-u-Din N, Rauf A (2014) Removal of coliform bacteria from municipal wastewater by algae. Proc Pak Acad Sci 51:129–138

    CAS  Google Scholar 

  • Al-Homaidan AA, Alabdullatif JA, Al-Hazzani AA, Al-Ghanayem AA, Alabbad AF (2015) Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi J Biol Sci 22:795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aminot Y, Litrico X, Chambolle M, Arnaud C, Pardon P, Budzindki H (2015) Development and application of a multi-residue method for the determination of 53 pharmaceuticals in water, sediment, and suspended solids using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 407:8585–8604

    Article  CAS  PubMed  Google Scholar 

  • Anastopoulos I, Kyzas GZ (2015) Progress in batch biosorption of heavy metals onto algae. J Mol Liq 209:77–86

    Article  CAS  Google Scholar 

  • Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Technoeconomic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J Environ Manage 240:293–302

    Article  CAS  PubMed  Google Scholar 

  • Arbib Z, de Godos I, Ruiz J, Perales JA (2017) Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Sci Total Environ 589:66–72

    Article  CAS  PubMed  Google Scholar 

  • Awuah E (2006) Pathogen removal mechanisms in macrophyte and algal waste stabilization ponds.

    Google Scholar 

  • Bai X, Acharya K (2017) Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water. Sci Total Environ 581:734–740

    Article  PubMed  CAS  Google Scholar 

  • Central Water Commission (2010) Water and related statistics, December. Water Planning and Project Wing, Central Water Commission, India

    Google Scholar 

  • Chinnasamy S, Sood A, Renuka N, Prasanna R, Ratha SK, Bhaskar S, Rengasamy R, Lewis DM (2014) Ecobiological aspects of algae cultivation in wastewaters for recycling of nutrients and biofuel applications. Biofuels 5:141–158

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337

    Article  CAS  Google Scholar 

  • De Wilt A, Butkovskyi A, Tuantet K, Leal LH, Fernandes TV, Langenhoff A, Zeeman G (2016) Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J Hazard Mater 304:84–92

    Article  PubMed  CAS  Google Scholar 

  • De-Bashan LE, Antoun H, Bashan Y (2008) Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol 44(4):938–947

    Article  CAS  PubMed  Google Scholar 

  • Delrue F, Álvarez-Díaz PD, Fon-Sing S, Fleury G, Sassi J-F (2016) The environmental biorefinery: using microalgae to remediate wastewater, a win-win paradigm. Energies 9:132

    Article  CAS  Google Scholar 

  • Ding T, Wang S, Yang B, Li J (2020) Biological removal of pharmaceuticals by Navicula sp. and biotransformation of bezafibrate. Chemosphere 240:124949

    Article  CAS  PubMed  Google Scholar 

  • Farahdiba AU, Hidayah EN, Asmar GA, Myint YW (2020) Growth and removal of nitrogen and phosphorus by a macroalgae Cladophora glomerata under different nitrate concentrations. Nat Environ Pollut Technol 19(2):809–813

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  • Fortunak JM, de Souza RO, Kulkarni AA, King CL, Ellison T, Miranda LS (2014) Active pharmaceutical ingredients for antiretroviral treatment in low-and middle-income countries: a survey. Antivir Ther 19(03):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28

    Article  CAS  Google Scholar 

  • García D, Posadas E, Blanco S, Acién G, García-Encina P, Bolado S, Muñoz R (2018) Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors. Bioresour Technol 248:120–126

    Article  PubMed  CAS  Google Scholar 

  • Gentili FG, Fick J (2017) Algal cultivation in urban wastewater: an efficient way to reduce pharmaceutical pollutants. J Appl Phycol 29(1):255–262

    Article  CAS  PubMed  Google Scholar 

  • Ghernaout D (2014) The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation—a review. J King Saud Univ Sci 26(3):169–180

    Article  Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35(4):339–354

    Article  CAS  Google Scholar 

  • Goffin A, Guérin S, Rocher V, Varrault G (2018) Towards a better control of the wastewater treatment process: excitation-emission matrix fluorescence spectroscopy of dissolved organic matter as a predictive tool of soluble BOD 5 in influents of six Parisian wastewater treatment plants. Environ Sci Pollut Res 25(9):8765–8776

    Article  CAS  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • Hallmann A (2015) Algae biotechnology-green cell-factories on the rise. Curr Biotechnol 4:389–415

    Article  CAS  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34(5):757–763

    Article  CAS  Google Scholar 

  • Jais NM, Mohamed R, Al-Gheethi A, Hashim MA (2017) The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol Environ Policy 19:37–52

    Article  CAS  Google Scholar 

  • Judd S, van den Broeke LJ, Shurair M, Kuti Y, Znad H (2015) Algal remediation of CO2 and nutrient discharges: a review. Water Res 87:356–366

    Article  CAS  PubMed  Google Scholar 

  • K’Oreje KO, Vergeynst L, Ombaka D, De Wispelaere P, Okoth M, Van Langenhove H, Demeestere K (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244

    Article  PubMed  CAS  Google Scholar 

  • Kaur R, Wani SP, Singh AK, Lal K (2012) Wastewater production, treatment and use in India. In: National Report presented at the 2nd Regional workshop on safe use of wastewater in agriculture, pp. 1–13

    Google Scholar 

  • Kumar R, Singh RD, Sharma KD (2005) Water resources of India. Curr Sci:794–811

    Google Scholar 

  • Laliberte G, Proulx D, De Pauw N, De La Noue J (1994) Algal technology in waste water treatment. In: Rai LC, Gaur JP, Soeder CJ (eds) Algae and water pollution, E. Schweizerbart’sche Verlagsbuchhandlung (Nagele u. Obermiller). Stuttgart, pp 283–302

    Google Scholar 

  • Larsdotter K (2006) Wastewater treatment with microalgae-a literature review. Vatten 62(1):31

    CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18(9):945–951

    Article  CAS  Google Scholar 

  • Leng L, Wei L, Xiong Q, Xu S, Li W, Lv S, Lu Q, Wan L, Wen Z, Zhou W (2020) Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere 238:124680

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Pemberton B, Lewis J, Scales PJ, Martin GJ (2020) Wastewater treatment using filamentous algae—a review. Bioresour Technol 298:122556

    Article  CAS  PubMed  Google Scholar 

  • Mantzorou A, Navakoudis E, Paschalidis K, Ververidis F (2018) Microalgae: a potential tool for remediating aquatic environments from toxic metals. Int J Environ Sci Technol 16:1815–1830

    Article  CAS  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88(10):3389–3401

    Article  CAS  Google Scholar 

  • Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46(13):7073–7085

    Article  CAS  PubMed  Google Scholar 

  • Mennaa FZ, Arbib Z, Perales JA (2019) Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: growth, nutrient removal kinetics and biomass coagulation-flocculation. Environ Sci Technol 40:342–355

    Article  CAS  Google Scholar 

  • Nguyen HT, Yoon Y, Ngo HH, Jang A (2021) The application of microalgae in removing organic micropollutants in wastewater. Crit Rev Environ Sci Technol 51(12):1187–1220

    Article  CAS  Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30(5):1031–1046

    Article  PubMed  CAS  Google Scholar 

  • Orandi S, Lewis DM (2013) Biosorption of heavy metals in a photo-rotating biological contactor—a batch process study. Appl Microbiol Biotechnol 97(11):5113–5123

    Article  CAS  PubMed  Google Scholar 

  • Oswald WJ (1995) Ponds in the twenty-first century. Water Sci Technol 31(12):1–8

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR, Gloyna EF, Hermann ER (1957) Algae in waste treatment [with Discussion]. Sew Indust Wastes 29:437–457

    Google Scholar 

  • Paddock M (2019) Microalgae wastewater treatment: a brief history. Preprints

    Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res 45(20):6637–6649

    Article  CAS  PubMed  Google Scholar 

  • Park DM et al (2016) Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. Environ Sci Technol 50:2735–2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng FQ, Ying GG, Yang B, Liu S, Lai HJ, Liu YS, Chen ZF, Zhou GJ (2014) Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and products identification. Chemosphere 95:581–588

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshini E, Priyadarshini SS, Pradhan N (2019) Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl Microbiol Biotechnol 7:1–20

    Google Scholar 

  • Rasoul-Amini S, Montazeri-Najafabady N, Shaker S, Safari A, Kazemi A, Mousavi P, Ghasemi Y (2014) Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatal Agric Biotechnol 3(2):126–131

    Article  Google Scholar 

  • Reddy K, Renuka N, Kumari S, Bux F (2021) Algae-mediated processes for the treatment of antiretroviral drugs in wastewater: prospects and challenges. Chemosphere 280:130674

    Article  CAS  PubMed  Google Scholar 

  • Roeselers G, Van Loosdrecht MC, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20(3):227–235

    Article  CAS  PubMed  Google Scholar 

  • Ruedaa E, García-Galánb MJ, Díez-Monterob R, Vilac J, Grifollc M, Garcíab J (2020) Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresour Technol 295:122233

    Article  CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Tech 101(1):58–64

    Article  CAS  Google Scholar 

  • Sahu O (2014) Reduction of organic and inorganic pollutant from waste water by algae. Int Lett Nat Sci 8(1)

    Google Scholar 

  • Salama ES, Roh HS, Dev S, Khan MA, Abou-Shanab RA, Chang SW, Jeon BH (2019) Algae as a green technology for heavy metals removal from various wastewater. World J Microbiol Biotechnol 35(5):1–19

    Article  CAS  Google Scholar 

  • Sami N, Fatma T (2019) Studies on estrone biodegradation potential of cyanobacterial species. Biocatal Agric Biotechnol 17:576–582

    Article  Google Scholar 

  • Saravanan V, Vijayakumar S (2012) Isolation and screening of biosurfactant producing microorganisms from oil contaminated soil. J Acad Industr Res 1(5):264–268

    Google Scholar 

  • Saravanan A, Kumar PS, Varjani S, Jeevanantham S, Yaashikaa PR, Thamarai P, George CS (2021) A review on algal-bacterial symbiotic system for effective treatment of wastewater. Chemosphere 271:129540

    Article  CAS  PubMed  Google Scholar 

  • Saúco C, Cano R, Marín D, Lara E, Rogalla F, Arbib Z (2021) Hybrid wastewater treatment system based in a combination of high rate algae pond and vertical constructed wetland system at large scale. J Water Process Eng 43:102311

    Article  Google Scholar 

  • Schoeman C, Mashiane M, Dlamini M, Okonkwo OJ (2015) Quantification of selected antiretroviral drugs in a wastewater treatment works in South Africa using GC-TOFMS. J Chromatogr A 6:4

    Google Scholar 

  • Sen AK, Bhattacharyya M (1994) Studies of uptake and toxic effects of Ni (II) on Salvinia natans. Water Air Soil Pollut 78(1):141–152

    Article  CAS  Google Scholar 

  • Silva LLS, Moreira CG, Curzio BA, Fonseca FVD (2017) Micropollutant removal from water by membrane and advanced oxidation processes—a review. Water Resour Protect 9:411–431

    Article  CAS  Google Scholar 

  • Singh N, Ghosh M (2022) Genetic engineered algae: recent developments and the promising engender for wastewater treatment. In: Shah MP, Rodriguez-Couto S, De La Cruz CBV, Biswas JK (eds) An integration of phycoremediation processes in wastewater treatment. Cambridge, Amsterdam, pp 379–398

    Chapter  Google Scholar 

  • Terrado R, Pasulka AL, Lie AAY, Orphan VJ, Heidelberg KB, Caron DA (2017) Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J 11:2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Barros MP, Campos SC, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Validi M (2001) Bioremediation—an overview. Pure Appl Chem 73(7):1163–1172

    Article  Google Scholar 

  • Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev SI (2016) Biofuel production from plant and algal biomass. Int J Hydrogen Energy 41(39):17257–17273

    Article  CAS  Google Scholar 

  • Wang Y, Liu J, Kang D, Wu C, Wu Y (2017) Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review. Rev Environ Sci and BioTechnol 16(4):717–735

    Article  Google Scholar 

  • Wei X, Viadero RC Jr, Bhojappa S (2008) Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Res 42(13):3275–3284

    Article  CAS  PubMed  Google Scholar 

  • Wood TP, Basson AE, Duvenage C, Rohwer ER (2016) The chlorination behaviour and environmental fate of the antiretroviral drug nevirapine in South African surface water. Water Res 104:349–360

    Article  CAS  PubMed  Google Scholar 

  • World Bank (2019) Global financial development report 2019/2020: bank regulation and supervision a decade after the global financial crisis. The World Bank

    Google Scholar 

  • Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36(1):30–44

    Article  CAS  PubMed  Google Scholar 

  • Xiong J-Q, Kim S-J, Kurade MB, Govindwar S, Abou-Shanab RAI, Kim J-R, Roh H-S, Khan MA, Jeon B-H (2019) Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. J Hazard Mater 370:138–146

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Liang J, Wang L, Markou G, Jia Q (2018) Operation optimization of a photo-sequencing batch reactor for wastewater treatment: study on influencing factors and impact on symbiotic microbial ecology. Bioresour Technol 252:7–13

    Article  CAS  PubMed  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 181:817–831

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Farahbakhsh K (2007) Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse. Water Res 41(12):2816–2824

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhakad, S., Chowdhury, P., Arora, S. (2022). Efficacy of Algae in the Bioremediation of Pollutants during Wastewater Treatment: Future Prospects and Challenges. In: Arora, S., Kumar, A., Ogita, S., Yau, Y.Y. (eds) Biotechnological Innovations for Environmental Bioremediation. Springer, Singapore. https://doi.org/10.1007/978-981-16-9001-3_23

Download citation

Publish with us

Policies and ethics