Skip to main content

Information Fusion Based on Score/Weight Classifier Fusion

  • Chapter
  • First Online:
Information Fusion

Abstract

By applying different classifiers to the classification, multiple classification scores will be generated. Generally, different classifiers enjoy their own advantages and disadvantages, and only a simple classifier usually fails to robustly achieve the classification. To jointly exploit the advantages of different classifiers, it is significant to use the score fusion. This chapter proposes two score fusion methods and applies them to classification. After reading this chapter, people can have preliminary knowledge on score fusion algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang D, Song F, Xu Y, Liang Z. Other tensor analysis and further direction. In: Advanced pattern recognition technologies with applications to biometrics. Hershey: IGI Global; 2009. p. 226–2.

    Chapter  Google Scholar 

  2. Xu Y, Zhang D. Represent and fuse bimodal biometric images at the feature level: complex-matrix-based fusion scheme. Opt Eng. 2010;49(3):037002.

    Article  Google Scholar 

  3. Ross A, Nandakumar K. Fusion, score-level. Encyclopedia Biom. 2009:611–616.

    Google Scholar 

  4. Jain A, Nandakumar K, Ross A. Score normalization in multimodal biometric systems. Pattern Recognit. 2005;38(12):2270–85.

    Article  Google Scholar 

  5. Xu Y, Zhu Q, Zhang D. Combine crossing matching scores with conventional matching scores for bimodal biometrics and face and palmprint recognition experiments. Neurocomputing 2011;74(18):3946–52.

    Article  Google Scholar 

  6. Nandakumar K, Chen Y, Dass SC, Jain A. Likelihood ratio-based biometric score fusion. IEEE Trans Pattern Anal Mach Intell. 2007;30(2):342–7.

    Article  Google Scholar 

  7. Brunelli R, Falavigna D. Person identification using multiple cues. IEEE Trans Pattern Anal Mach Intell. 1995;17(10):955–66.

    Article  Google Scholar 

  8. Ma Y, Cukic B, Singh H. A classification approach to multi-biometric score fusion. In: International conference on audio-and video-based biometric person authentication. Berlin: Springer; 2005. p. 484–93.

    Chapter  Google Scholar 

  9. Bengio S, Marcel C, Marcel S, Mariéthoz J. Confidence measures for multimodal identity verification. Inf Fusion 2002;3(4):267–76.

    Article  Google Scholar 

  10. Moin MS, Parviz M. Exploring AUC boosting approach in multimodal biometrics score level fusion. In: 2009 fifth international conference on intelligent information hiding and multimedia signal processing. Piscataway: IEEE; 2009. p. 616–9.

    Chapter  Google Scholar 

  11. Parviz M, Moin MS. Multivariate polynomials estimation based on GradientBoost in multimodal biometrics. In: International conference on intelligent computing. Berlin: Springer; 2008. p. 471–7.

    MATH  Google Scholar 

  12. Snelick R, Uludag U, Mink A, Indovina M, Jain A. Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems. IEEE Trans Pattern Anal Mach Intell. 2005;27(3):450–5.

    Article  Google Scholar 

  13. Kittler J, Hatef M, Duin RPW, Matas J. On combining classifiers. IEEE Trans Pattern Anal Mach Intell. 1998:20(3):226–239.

    Article  Google Scholar 

  14. Ulery B, Hicklin AR, Watson C, Fellner W, Hallinan P. Studies of biometric fusion: NIST. Technical Report NISTIR 7346. 2006.

    Google Scholar 

  15. Rakhlin A, Panchenko D, Mukherjee S. Risk bounds for mixture density estimation. ESAIM: Probab Stat. 2005;9:220–229.

    Article  MathSciNet  MATH  Google Scholar 

  16. Toh KA, Kim J, Lee S. Maximizing area under ROC curve for biometric scores fusion. Pattern Recognit. 2008;41(11):3373–3392.

    Article  MATH  Google Scholar 

  17. Rudin C, Schapire RE. Margin-based ranking and an equivalence between AdaBoost and RankBoost. J Mach Learn Res. 2009;10:2193–2232.

    MathSciNet  MATH  Google Scholar 

  18. Gao S, Sun Q. Improving semantic concept detection through optimizing ranking function. IEEE Trans Multimedia 2007;9(7):1430–1442.

    Article  Google Scholar 

  19. Sim HM, Asmuni H, Hassan R, Othman RM. Multimodal biometrics: weighted score level fusion based on non-ideal IRIS and face images. Exp Syst Appl. 2014;41(11):5390–5404.

    Article  Google Scholar 

  20. McCloskey S, Liu J. Metadata-weighted score fusion for multimedia event detection. In: 2014 Canadian conference on computer and robot vision. Piscataway: IEEE; 2014. p. 299–305.

    Chapter  Google Scholar 

  21. Butakoff C, Frangi AF. A framework for weighted fusion of multiple statistical models of shape and appearance. IEEE Trans Pattern Anal Mach Intell. 2006;28(11):1847–1857.

    Article  Google Scholar 

  22. Xu Y, Li X, Yang J, Lai Z, Zhang D. Integrating conventional and inverse representation for face recognition. IEEE Trans Cybern. 2013;44(10):1738–1746.

    Google Scholar 

  23. Casazza PG, Peterson J. Weighted fusion frame construction via spectral Tetris. Adv Comput Math. 2014;40(2):335–51.

    Article  MathSciNet  MATH  Google Scholar 

  24. Jain AK, Ross A. Learning user-specific parameters in a multibiometric system. In: International conference on image processing proceedings, vol. 1. Piscataway: IEEE; 2002. p. I.

    Google Scholar 

  25. Moumene ME, Nourine R, Ziou D. Generalized exposure fusion weights estimation. In: 2014 Canadian conference on computer and robot vision. Piscataway: IEEE; 2014. p. 71–6.

    Chapter  Google Scholar 

  26. Kim S, Choi JY, Han S, Ro YM. Adaptive weighted fusion with new spatial and temporal fingerprints for improved video copy detection. Signal Process Image Commun. 2014;29(7):788–806.

    Article  Google Scholar 

  27. Gao G, Zhang L, Yang J, Zhang L, Zhang D. Reconstruction based finger-knuckle-print verification with score level adaptive binary fusion. IEEE Trans Image Process 2013;22(12):5050–62.

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang S, Zuo W, Liu L, Li Y, Zhang D. Adaptive weighted fusion of local kernel classifiers for effective pattern classification. In: International conference on intelligent computing. Berli: Springer; 2011. p. 63–70.

    Google Scholar 

  29. Xu Y, Lu Y. Adaptive weighted fusion: a novel fusion approach for image classification. Neurocomputing 2015;168:566–74.

    Article  Google Scholar 

  30. Segata N, Blanzieri E. Fast and scalable local kernel machines. J Mach Learn Res. 2010;11:1883–926.

    MathSciNet  MATH  Google Scholar 

  31. Kim C, Choi CH. Image covariance-based subspace method for face recognition. Pattern Recognit. 2007;40(5):1592–604.

    Article  MATH  Google Scholar 

  32. Price JR, Gee TF. Face recognition using direct, weighted linear discriminant analysis and modular subspaces. Pattern Recognit. 2005;38(2):209–219.

    Article  MATH  Google Scholar 

  33. Li SZ, Lei Z, Ao M. The HFB face database for heterogeneous face biometrics research. In: 2009 IEEE computer society conference on computer vision and pattern recognition workshops. Piscataway: IEEE; 2009. p. 1–8.

    Google Scholar 

  34. HK-PolyU 2DT3D palmprint dataset. http://www.comp.polyu.edu.hk/~biometrics/2D_3D_Palmprint.htm?

  35. Han D, Guo Z, Zhang D. Multispectral palmprint recognition using wavelet-based image fusion. In: 2008 9th international conference on signal processing. Piscataway: IEEE; 2008, p. 2074–77.

    Google Scholar 

  36. Wang SJ, Yang J, Zhang N, Zhou CG. Tensor discriminant color space for face recognition. IEEE Trans Image Process. 2011;20(9):2490–501.

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang SJ, Yang J, Sun MF, Peng XJ, Sun MM, Zhou CG. Sparse tensor discriminant color space for face verification. IEEE Trans Neural Netw Learn Syst. 2012;23(6):876–88.

    Article  Google Scholar 

  38. Ross A, Jain A. Information fusion in biometrics. Pattern Recognit Lett. 2003;24(13):2115–2125.

    Article  Google Scholar 

  39. Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;(7):711–20.

    Google Scholar 

  40. Zhang L, Yang M, Feng X. Sparse representation or collaborative representation: which helps face recognition? In: 2011 International conference on computer vision Piscataway: IEEE; 2011. p. 471–8.

    Google Scholar 

  41. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2008;31(2):210–27.

    Article  Google Scholar 

  42. Huang SM, Yang JF. Improved principal component regression for face recognition under illumination variations. IEEE Signal Process Lett. 2012;19(4):179–82.

    Article  Google Scholar 

  43. Beygelzimer A, Kakade S, Langford J. Cover trees for nearest neighbor. In: Proceedings of the 23rd international conference on machine learning. New York: ACM; 2006. p. 97–104.

    Chapter  Google Scholar 

  44. Vapnik V, Bottou L. Local algorithms for pattern recognition and dependencies estimation. Neural Comput. 1993;5(6):893–909.

    Article  Google Scholar 

  45. Vapnik V. The nature of statistical learning theory. Berlin: Springer; 2013.

    MATH  Google Scholar 

  46. Zakai A, Ritov Y. Consistency and localizability. J Mach Learn Res. 2009;10:827–856.

    MathSciNet  MATH  Google Scholar 

  47. Liu CL. Classifier combination based on confidence transformation. Pattern Recognit. 2005;38(1):11–28.

    Article  MATH  Google Scholar 

  48. Segata N. FaLKM-lib: a library for fast local kernel machines 2009. Freely available for research and education purposes at http://disi.unitn.it/~segata/FaLKM-lib.

  49. Newman DJ. UCI repository of machine learning database 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.

  50. Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 2000;290(5500):2319–23.

    Article  Google Scholar 

  51. Saul LK, Roweis ST. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res. 2003;4:19–155.

    MathSciNet  MATH  Google Scholar 

  52. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000;290(5500):2323–6.

    Article  Google Scholar 

  53. Bengio Y, Paiement JF, Vincent P, Delalleau O, Roux NL, Ouimet M. Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In: Advances in neural information processing systems 2004. p. 177–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd. & Higher Education Press, China

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Zhang, B., Zhang, D. (2022). Information Fusion Based on Score/Weight Classifier Fusion. In: Information Fusion. Springer, Singapore. https://doi.org/10.1007/978-981-16-8976-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8976-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8975-8

  • Online ISBN: 978-981-16-8976-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics