Skip to main content

Information Fusion Based on Metric Learning

  • Chapter
  • First Online:
Information Fusion

Abstract

Metric learning aims to measure the similarity or dissimilarity between each pair of samples. Until now, various types of metrics are studied and achieve satisfied performances in many applications. To comprehensively exploit the advantages of different metrics, this chapter proposes two metric fusion methods and applies them to classification and verification. After reading this chapter people can have preliminary knowledge on metric learning based fusion algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guillaumin M, Verbeek J, Schmid C. Is that you? metric learning approaches for face identification. In: 2009 IEEE 12th international conference on computer vision. Piscataway: IEEE; 2009. p. 498–505.

    Chapter  Google Scholar 

  2. Taigman Y, Wolf L, Hassner T, et al. Multiple one-shots for utilizing class label information. In: BMVC, vol. 2. 2009. p. 1–12.

    Google Scholar 

  3. Nguyen HV, Bai L. Cosine similarity metric learning for face verification. In: Asian conference on computer vision. Berlin: Springer; 2010. p. 709–720.

    Google Scholar 

  4. Cao Q, Ying Y, Li P. Similarity metric learning for face recognition. In: Proceedings of the IEEE international conference on computer vision. 2013. p. 2408–2415.

    Google Scholar 

  5. Huang GB, Mattar M, Berg T, Learned-Miller E. Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on faces in’Real-Life’Images: detection, alignment, and recognition. 2008.

    Google Scholar 

  6. Davis JV, Kulis B, Jain P, Sra S, Dhillon IS. Information-theoretic metric learning. In: Proceedings of the 24th international conference on machine learning. New York: ACM; 2007. p. 209–216

    Chapter  Google Scholar 

  7. Ying Y, Li P. Distance metric learning with eigenvalue optimization. J Mach Learn Res. 2012;13(Jan):1–26.

    MathSciNet  MATH  Google Scholar 

  8. Weinberger KQ, Saul LK. Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res. 2009;10(Feb):207–244.

    MATH  Google Scholar 

  9. Shen C, Kim J, Wang L. Scalable large-margin Mahalanobis distance metric learning. IEEE Trans Neural Netw. 2010;21(9):1524–1530.

    Article  Google Scholar 

  10. Bian W, Tao D. Constrained empirical risk minimization framework for distance metric learning. IEEE Trans Neural Netw Learn Syst. 2012;23(8):1194–1205.

    Article  Google Scholar 

  11. Wang F, Zuo W, Zhang L, Meng D, Zhang D. A kernel classification framework for metric learning. IEEE Trans Neural Netw Learn Syst. 2014;26(9):1950–1962.

    Article  MathSciNet  Google Scholar 

  12. Niu G, Dai B, Yamada M, Sugiyama M. Information-theoretic semi-supervised metric learning via entropy regularization. Neural Comput 2014;26(8):1717–1762.

    Article  MathSciNet  Google Scholar 

  13. Hoi SCH, Liu W, Chang S-F. Semi-supervised distance metric learning for collaborative image retrieval and clustering. ACM Trans Multimedia Comput Commun Appl. 2010;6(3):18.

    Article  Google Scholar 

  14. Parameswaran S, Weinberger KQ. Large margin multi-task metric learning. In: Advances in neural information processing systems. 2010. p. 1867–1875.

    Google Scholar 

  15. Kulis B et al. Metric learning: a survey. Found Trends Mach Learn. 2013;5(4):287–364.

    Article  Google Scholar 

  16. Xia T, Tao D, Mei T, Zhang Y. Multiview spectral embedding. IEEE Trans Syst Man Cybern Part B 2010;40(6):1438–1446.

    Article  Google Scholar 

  17. Xie B, Mu Y, Tao D, Huang K. M-SNE: multiview stochastic neighbor embedding. IEEE Trans Syst Man Cybern Part B 2011;41(4):1088–1096.

    Article  Google Scholar 

  18. Wang H, Yuan J. Collaborative multifeature fusion for transductive spectral learning. IEEE Trans Cybern. 2014;45(3):451–461.

    Article  Google Scholar 

  19. Xiao Y, Liu B, Hao Z, Cao L. A similarity-based classification framework for multiple-instance learning. IEEE Trans Cybern 2013;44(4):500–515.

    Article  Google Scholar 

  20. Nguyen DT, Nguyen CD, Hargraves R, Kurgan LA, Cios KJ. mi-DS: Multiple-instance learning algorithm. IEEE Trans Cybern 2012;43(1):143–154.

    Article  Google Scholar 

  21. Hu J, Lu J, Yuan J, Tan Y-P. Large margin multi-metric learning for face and kinship verification in the wild. In: Asian conference on computer vision. Berlin: Springer; 2014. p. 252–267.

    Google Scholar 

  22. Cui Z, Li W, Xu D, Shan S, Chen X. Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2013. p. 3554–3561.

    Google Scholar 

  23. Zhang L, Zhang D. Metricfusion: generalized metric swarm learning for similarity measure. Inf Fusion. 2016;30:80–90.

    Article  Google Scholar 

  24. Hertz T, Bar-Hillel A, Weinshall D. Learning distance functions for image retrieval. In: Proceedings of the 2004 IEEE Computer Society Conference on computer vision and pattern recognition, 2004. CVPR 2004. , vol. 2. 2004. p. II–570–II–577.

    Google Scholar 

  25. Brunner C, Fischer A, Luig K, Thies T. Pairwise support vector machines and their application to large scale problems. J Mach Learn Res. 2012;13(1):2279–2292.

    MathSciNet  MATH  Google Scholar 

  26. Chen D, Cao X, Wang L, Wen F, Sun J. Bayesian face revisited: a joint formulation. In: Computer vision–ECCV 2012. Berlin: Springer; 2012. p. 566–579.

    Chapter  Google Scholar 

  27. Schroff F, Kalenichenko D, Philbin J. Facenet: a unified embedding for face recognition and clustering. In: The IEEE conference on computer vision and pattern recognition (CVPR). 2015.

    Google Scholar 

  28. Li M, Wang Q, Zhang D, Li P, Zuo W. Joint distance and similarity measure learning based on triplet-based constraints. Inf Sci. 2017;406:119–132.

    Article  Google Scholar 

  29. Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci. 2009;2(1):183–202.

    Article  MathSciNet  Google Scholar 

  30. Hu J, Lu J, Tan Y-P. Discriminative deep metric learning for face verification in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. p. 1875–1882.

    Google Scholar 

  31. Frank A, Asuncion A. UCI machine learning repository online. 2011.

    Google Scholar 

  32. Ying Y, Huang K, Campbell C. Sparse metric learning via smooth optimization. In: Advances in neural information processing systems. 2009. p. 2214–2222.

    Google Scholar 

  33. Kumar N, Berg AC, Belhumeur PN, Nayar SK. Attribute and simile classifiers for face verification. In: 2009 IEEE 12th international conference on computer vision. Piscataway: IEEE; 2009. p. 365–372.

    Chapter  Google Scholar 

  34. Li Z, Chang S, Liang F, Huang TS, Cao L, Smith JR. Learning locally-adaptive decision functions for person verification. In: CVPR. 2013.

    Google Scholar 

  35. Cai X, Wang C, Xiao B, Chen X, Zhou J. Deep nonlinear metric learning with independent subspace analysis for face verification. In: Proceedings of the 20th ACM international conference on Multimedia. New York: ACM; 2012. p. 749–752.

    Chapter  Google Scholar 

  36. Huang GB, Lee H, Learned-Miller E. Learning hierarchical representations for face verification with convolutional deep belief networks. In: 2012 IEEE conference on computer vision and pattern recognition. Piscataway: IEEE; 2012. p. 2518–2525.

    Chapter  Google Scholar 

  37. Koestinger M, Hirzer M, Wohlhart P, Roth PM, Bischof H. Large scale metric learning from equivalence constraints. In: 2012 IEEE conference on computer vision and pattern recognition. Piscataway: IEEE; 2012. p. 2288–2295.

    Chapter  Google Scholar 

  38. Wang F, Zuo W, Zhang L, Meng D, Zhang D. A kernel classification framework for metric learning. IEEE Trans Neural Netw Learn Syst. 2015;26(9):1950–1962.

    Article  MathSciNet  Google Scholar 

  39. Vert J-P, Qiu J, Noble WS. A new pairwise kernel for biological network inference with support vector machines. BMC Bioinf. 2007;8 Suppl 10:S8.

    Google Scholar 

  40. Schultz M, Joachims T. Learning a distance metric from relative comparisons. In: Advances in neural information processing systems (NIPS). 2004. p. 41.

    Google Scholar 

  41. Lichman M. UCI machine learning repository. 2013.

    Google Scholar 

  42. Goldberger J, Hinton GE, Roweis ST, Salakhutdinov R. Neighbourhood components analysis. In: Advances in neural information processing systems. 2004. p. 513–520.

    Google Scholar 

  43. Chechik G, Shalit U, Sharma V, Bengio S. An online algorithm for large scale image similarity learning. In: Advances in neural information processing systems. 2009 p. 306–314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd. & Higher Education Press, China

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Zhang, B., Zhang, D. (2022). Information Fusion Based on Metric Learning. In: Information Fusion. Springer, Singapore. https://doi.org/10.1007/978-981-16-8976-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8976-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8975-8

  • Online ISBN: 978-981-16-8976-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics