Skip to main content

Information Fusion Based on Sparse/Collaborative Representation

  • Chapter
  • First Online:
Information Fusion

Abstract

Sparse representation follows the insight of data representation of human beings, allowing the data to be more accurately and robustly represented. Recently, many works in image classification, image retrieval, image recovery, etc., have shown its effectiveness. In contrast to the sparse representation, collaborative representation ignores the robustness but encourages algorithms to enjoy a fast computation. This chapter respectively proposes an information fusion method based on the sparse representation and two information fusion methods based on the collaborative representation. After reading this chapter, people can have preliminary knowledge on sparse/collaborative representation based fusion algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olshausen BA, Field DJ. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis Res. 1997;37(23):3311–25.

    Article  Google Scholar 

  2. Vinje WE, Gallant JL. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 2000;287(5456):1273–6.

    Article  Google Scholar 

  3. Mairal J, Bach FR, Ponce J, Sapiro G, Zisserman A. Non-local sparse models for image restoration. In: ICCV, vol. 29, p. 54–62. 2009. Citeseer.

    Google Scholar 

  4. Yang J, Yu K, Gong Y, Huang T. Linear spatial pyramid matching using sparse coding for image classification. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE; 2009. p. 1794–801.

    Google Scholar 

  5. Huang K, Aviyente S. Sparse representation for signal classification. Adv Neural Inf Process Syst. 2007;19:609–16.

    Google Scholar 

  6. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2008;31(2):210–27.

    Article  Google Scholar 

  7. Zhang L, Yang M, Feng X. Sparse representation or collaborative representation: Which helps face recognition? In: 2011 International conference on computer vision. IEEE, 2011. p. 471–8.

    Google Scholar 

  8. Yang M, Zhang L, Yang J, Zhang D. Robust sparse coding for face recognition. In: CVPR 2011. IEEE, 2011. p. 625–32.

    Google Scholar 

  9. Heisele B, Ho P, Poggio T. Face recognition with support vector machines: global versus component-based approach. In: Proceedings eighth IEEE international conference on computer vision. ICCV 2001. IEEE, 2001. vol. 2, p. 688–94.

    Google Scholar 

  10. Li SZ. Face recognition based on nearest linear combinations. In: Proceedings of 1998 IEEE computer society conference on computer vision and pattern recognition (Cat. No. 98CB36231). IEEE, 1998. p. 839–44.

    Google Scholar 

  11. Bin C, Jianchao Y, Shuicheng Y, Yun F, Huang TS. Learning with l1-graph for image analysis. IEEE Trans Image Process. 2010;19(4):858–66.

    Article  MathSciNet  Google Scholar 

  12. Li J, Zhang D, Li Y, Wu J, Zhang B. Joint similar and specific learning for diabetes mellitus and impaired glucose regulation detection. Inf Sci. 2017;384:191–204.

    Article  Google Scholar 

  13. Rigamonti R, Brown MA, Lepetit V. Are sparse representations really relevant for image classification? In: CVPR 2011. IEEE, 2011. p. 1545–52.

    Google Scholar 

  14. Yang M, Zhang L, Zhang D, Wang S. Relaxed collaborative representation for pattern classification. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012. p. 2224–31.

    Google Scholar 

  15. Li J, Zhang B, Zhang D. Joint discriminative and collaborative representation for fatty liver disease diagnosis. Expert Syst Appl. 2017;89:31–40.

    Article  Google Scholar 

  16. Lin Z, Liu R, Su Z. Linearized alternating direction method with adaptive penalty for low-rank representation. In: Advances in neural information processing systems, 2011. p. 612–20.

    Google Scholar 

  17. Ji T.-Y., Huang T.-Z., Zhao X.-L., Ma T.-H., Liu G. Tensor completion using total variation and low-rank matrix factorization. Inf Sci. 2016;326:243–57.

    Article  MathSciNet  Google Scholar 

  18. Lin Z, Chen M, Ma Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. Preprint, arXiv:1009.5055. 2010.

    Google Scholar 

  19. Ghasemishabankareh B, Li X, Ozlen M. Cooperative coevolutionary differential evolution with improved augmented Lagrangian to solve constrained optimisation problems. Inf Sci. 2016.

    Google Scholar 

  20. Rosasco L, Verri A, Santoro M, Mosci S, Villa S. Iterative projection methods for structured sparsity regularization, 2009.

    Google Scholar 

  21. Yuan X-T, Liu X, Yan S. Visual classification with multitask joint sparse representation. IEEE Trans Image Process. 2012;21(10):4349–60.

    Article  MathSciNet  Google Scholar 

  22. Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.

    Article  Google Scholar 

  23. Hsieh C-J, Chang K-W, Lin C-J, Sathiya Keerthi S, Sundararajan S. A dual coordinate descent method for large-scale linear SVM. In: Proceedings of the 25th international conference on machine learning. ACM, 2008. p. 408–15.

    Google Scholar 

  24. Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. LIBLINEAR: a library for large linear classification. J Mach Learn Res. 2008;9:1871–4.

    MATH  Google Scholar 

  25. Bengio S, Pereira F, Singer Y, Strelow D. Group sparse coding. In: Advances in neural information processing systems, 2009. p. 82–9.

    Google Scholar 

  26. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):210–27.

    Article  Google Scholar 

  27. Georghiades AS, Belhumeur PN. Illumination cone models for face recognition under variable lighting. In: Proceedings of CVPR98, 1998.

    Google Scholar 

  28. Lee K-C, Ho J, Kriegman DJ. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell. 2005;(5):684–698.

    Google Scholar 

  29. Martinez AM. The AR face database. CVC Technical Report24, 1998.

    Google Scholar 

  30. Naseem I, Togneri R, Bennamoun M. Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell. 2010;32(11):2106–12.

    Article  Google Scholar 

  31. Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek W. Overview of the face recognition grand challenge. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), IEEE, 2005. vol. 1, p. 947–54.

    Google Scholar 

  32. Wolf L, Hassner T, Taigman Y. Similarity scores based on background samples. In: Asian conference on computer vision. Springer, 2009. p. 88–97.

    Google Scholar 

  33. Liu C, Wechsler H. Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Trans Image Process. 2002;11(4):467–476.

    Article  Google Scholar 

  34. Su Y, Shan S, Chen X, Gao W. Hierarchical ensemble of global and local classifiers for face recognition. IEEE Trans Image Process. 2009;18(8):1885–96.

    Article  MathSciNet  Google Scholar 

  35. Ahonen T, Hadid A, Pietikäinen M. Face recognition with local binary patterns. In: European conference on computer vision. Springer, 2004. p. 469–481.

    MATH  Google Scholar 

  36. Belhumeur PN, Hespanha JP, Kriegman DJ. Recognition using class specific linear projection, 1997.

    Google Scholar 

  37. Nilsback M-E, Zisserman A. A visual vocabulary for flower classification. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06). IEEE, 2006. vol. 2, p. 1447–54.

    Google Scholar 

  38. Nilsback M-E, Zisserman A. Automated flower classification over a large number of classes. In: 2008 Sixth Indian conference on computer vision, graphics & image processing. IEEE, 2008. p. 722–9.

    Google Scholar 

  39. Xu Y, Zhong Z, Yang J, You J, Zhang D. A new discriminative sparse representation method for robust face recognition via l 2 regularization. IEEE Trans Neural Netw Learn Syst. 2016;28(10):2233–42.

    Article  Google Scholar 

  40. Gu S, Zhang L, Zuo W, Feng X. Projective dictionary pair learning for pattern classification. In: Advances in neural information processing systems, 2014. p. 793–801.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd. & Higher Education Press, China

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Zhang, B., Zhang, D. (2022). Information Fusion Based on Sparse/Collaborative Representation. In: Information Fusion. Springer, Singapore. https://doi.org/10.1007/978-981-16-8976-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8976-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8975-8

  • Online ISBN: 978-981-16-8976-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics