Skip to main content

Introduction

  • Chapter
  • First Online:
Information Fusion

Abstract

“Information Fusion” plays a key role in many fields, e.g., machine learning, deep learning, and pattern recognition etc. It is capable of fusing multiple features, modalities, views or algorithms, greatly contributing to the performance improvement in many applications. This chapter introduces what is “Information Fusion”, reviews the history of information fusion and analyzes the main contributions of this book. After reading this chapter, people will have some shallow ideas on information fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in videos. In: Ninth IEEE international conference on computer vision proceedings 2003. Piscataway: IEEE; 2003. p. 1470–77.

    Chapter  Google Scholar 

  2. Raina R, Battle A, Lee H, Packer B, Ng AY. Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th international conference on machine learning. New York: ACM; 2007. p. 759–66.

    Chapter  Google Scholar 

  3. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.

    MathSciNet  Google Scholar 

  4. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–297.

    MATH  Google Scholar 

  5. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A. Non-local sparse models for image restoration. In: 2009 IEEE 12th international conference on computer vision. Piscataway: IEEE; 2009. p. 2272–79.

    Chapter  Google Scholar 

  6. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):210–27.

    Article  Google Scholar 

  7. Yang M, Zhang L, Yang J, Zhang D. Regularized robust coding for face recognition. IEEE Trans Image Process. 2013;22(5):1753–66.

    Article  MathSciNet  MATH  Google Scholar 

  8. Nie F, Huang H, Cai X, Ding CH. Efficient and robust feature selection via joint 2, 1-norms minimization. In: Advances in neural information processing systems. 2010. p. 1813–21.

    Google Scholar 

  9. Gao S, Tsang IWH, Chia LT. Kernel sparse representation for image classification and face recognition. In: Computer vision–ECCV 2010. Berlin: Springer; 2010. p. 1–14.

    Google Scholar 

  10. Zuo W, Meng D, Zhang L, Feng X, Zhang D. A generalized iterated shrinkage algorithm for non-convex sparse coding. In: 2013 IEEE international conference on computer vision (ICCV). Piscataway: IEEE; 2013. p. 217–24.

    Chapter  Google Scholar 

  11. Yang M, Van Gool L, Zhang L. Sparse variation dictionary learning for face recognition with a single training sample per person. In: 2013 IEEE international conference on computer vision (ICCV). Piscataway: IEEE; 2013. p. 689–96.

    Chapter  Google Scholar 

  12. Rodriguez F, Sapiro G. Sparse representations for image classification: learning discriminative and reconstructive non-parametric dictionaries. Technical report, DTIC Document 2008.

    Google Scholar 

  13. Yang M, Zhang L, Feng X, Zhang D. Sparse representation based Fisher discrimination dictionary learning for image classification. Int J Comput Vision 2014;109(3):209–32.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang M, Dai D, Shen L, Van Gool L. Latent dictionary learning for sparse representation based classification. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). Piscataway: IEEE; 2014, p. 4138–45.

    Chapter  Google Scholar 

  15. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems 2012. p. 1097–1105.

    Google Scholar 

  16. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition 2016. p. 770–8.

    Google Scholar 

  17. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition 2014. arXiv:1409.1556.

    Google Scholar 

  18. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vision 2004;60(2):91–110.

    Article  Google Scholar 

  19. Wang X, Han TX, Yan S. An HOG-LBP human detector with partial occlusion handling. In: 2009 IEEE 12th international conference on computer vision. Piscataway: IEEE; 2009. p. 32–9.

    Chapter  Google Scholar 

  20. Guillaumin M, Verbeek J, Schmid C. Is that you? Metric learning approaches for face identification. In: 2009 IEEE 12th international conference on computer vision. Piscataway: IEEE; 2009. p. 498–505.

    Chapter  Google Scholar 

  21. Taigman Y, Wolf L, Hassner T et al. Multiple one-shots for utilizing class label information. In: The British machine vision conference (BMVC), vol. 2. 2009, p. 1–12.

    Google Scholar 

  22. Nguyen HV, Bai L. Cosine similarity metric learning for face verification. In: Asian conference on computer vision. Berlin: Springer; 2010. p. 709–20.

    Google Scholar 

  23. Cao Q, Ying Y, Li P. Similarity metric learning for face recognition. In: Proceedings of the IEEE international conference on computer vision. 2013. p. 2408–15.

    Google Scholar 

  24. Ross A, Nandakumar K. Fusion, score-level. In: Encyclopedia of biometrics. 2009, p. 611–6.

    Google Scholar 

  25. Jain A, Nandakumar K, Ross A. Score normalization in multimodal biometric systems. Pattern Recognit. 2005;38(12):2270–85.

    Article  Google Scholar 

  26. Xu Y, Zhu Q, Zhang D. Combine crossing matching scores with conventional matching scores for bimodal biometrics and face and palmprint recognition experiments. Neurocomputing 2011;74(18):3946–52.

    Article  Google Scholar 

  27. Mc Donald K, Smeaton AF. A comparison of score, rank and probability-based fusion methods for video shot retrieval. In: International conference on image and video retrieval. Berlin: Springer; 2005. p. 61–70.

    Chapter  Google Scholar 

  28. Nagar A, Nandakumar K, Jain AK. Multibiometric cryptosystems based on feature-level fusion. IEEE Trans Inf Forensics Secur. 2011;7(1):255–68.

    Article  Google Scholar 

  29. Nandakumar K, Jain AK, Ross A. Fusion in multibiometric identification systems: what about the missing data? In: International conference on biometrics. Berlin: Springer; 2009. p. 743–52.

    Google Scholar 

  30. Nandakumar K, Chen Y, Dass SC, Jain A. Likelihood ratio-based biometric score fusion. IEEE Trans Pattern Anal Mach Intell. 2007;30(2):342–7.

    Article  Google Scholar 

  31. Sim KC, Lee KA. Adaptive score fusion using weighted logistic linear regression for spoken language recognition. In: 2010 IEEE international conference on acoustics, speech and signal processing. Piscataway: IEEE; 2010. p. 5018–21.

    Chapter  Google Scholar 

  32. Yuan XT, Liu X, Yan S. Visual classification with multitask joint sparse representation. IEEE Trans Image Process. 2012;21(10):4349–60.

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang M, Zhang L, Zhang D, Wang S. Relaxed collaborative representation for pattern classification. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). Piscataway: IEEE; 2012. p. 2224–31.

    Chapter  Google Scholar 

  34. Li J, Zhang B, Zhang D. Joint discriminative and collaborative representation for fatty liver disease diagnosis. Exp Syst Appl. 2017;89:31–40.

    Article  Google Scholar 

  35. Wu F, Jing XY, You X, Yue D, Hu R, Yang JY. Multi-view low-rank dictionary learning for image classification. Pattern Recognit. 2016;50:143–54.

    Article  MATH  Google Scholar 

  36. Bahrampour S, Nasrabadi NM, Ray A, Jenkins WK. Multimodal task-driven dictionary learning for image classification. IEEE Trans Image Process. 2016;25(1):24–38.

    Article  MathSciNet  MATH  Google Scholar 

  37. Guo Y. Convex subspace representation learning from multi-view data. In: Proceedings of the twenty-seventh AAAI conference on artificial (AAAI’13), vol 1. 2013. p. 2.

    Google Scholar 

  38. Zhang L, Zhang D. Visual understanding via multi-feature shared learning with global consistency. IEEE Trans Multimedia 2016;18(2):247–59.

    Article  Google Scholar 

  39. Hotelling H. Relations between two sets of variates. Biometrika 1936;28(3–4):321–77.

    Article  MATH  Google Scholar 

  40. Sun J, Keates S. Canonical correlation analysis on data with censoring and error information. IEEE Trans Neural Netw Learn Syst. 2013;24(12):1909–19.

    Article  Google Scholar 

  41. Yuan YH, Sun QS. Multiset canonical correlations using globality preserving projections with applications to feature extraction and recognition. IEEE Trans Neural Netw Learn Syst. 2014;25(6):1131–46.

    Article  Google Scholar 

  42. Archambeau C, Bach FR. Sparse probabilistic projections. In: Advances in neural information processing systems 2009. p. 73–80.

    Google Scholar 

  43. Nicolaou, MA, Panagakis Y, Zafeiriou S, Pantic M. Robust canonical correlation analysis: audio-visual fusion for learning continuous interest. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP). Piscataway: IEEE; 2014. p. 1522–26.

    Chapter  Google Scholar 

  44. Bach FR, Jordan MI. A probabilistic interpretation of canonical correlation analysis. 2005.

    Google Scholar 

  45. Rupnik J, Shawe-Taylor J. Multi-view canonical correlation analysis. In: Conference on data mining and data warehouses (SiKDD 2010) 2010. p. 1–4.

    Google Scholar 

  46. Kan M, Shan S, Zhang H, Lao S, Chen X. Multi-view discriminant analysis. IEEE Trans Pattern Anal Mach Intell. 2016;38(1):188–94.

    Article  Google Scholar 

  47. Sharma A, Kumar A, Daume H, Jacobs DW. Generalized multiview analysis: a discriminative latent space. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). Piscataway: IEEE; 2012. p. 2160–67.

    Chapter  Google Scholar 

  48. Akaho S. A kernel method for canonical correlation analysis 2006. arXiv preprint cs/0609071.

    Google Scholar 

  49. Diethe T, Hardoon DR, Shawe-Taylor J. Constructing nonlinear discriminants from multiple data views. In: Joint European conference on machine learning and knowledge discovery in databases. Berlin: Springer; 2010. p. 328–43.

    Chapter  Google Scholar 

  50. Lu X, Li X, Mou L. Semi-supervised multitask learning for scene recognition. IEEE Trans Cybern. 2015;45(9):1967–76.

    Article  Google Scholar 

  51. Eleftheriadis S, Rudovic O, Pantic M. Discriminative shared Gaussian processes for multiview and view-invariant facial expression recognition. IEEE Trans Image Process. 2015;24(1):189–204.

    Article  MathSciNet  MATH  Google Scholar 

  52. Lawrence ND. Gaussian process latent variable models for visualisation of high dimensional data. Adv Neural Inf Process Syst. 2004;16(3):329–36.

    Google Scholar 

  53. Ek CH, Lawrence PHTND. Shared Gaussian process latent variable models. Ph.D. Thesis 2009.

    Google Scholar 

  54. Urtasun R, Darrell T. Discriminative Gaussian process latent variable model for classification. In Proceedings of the 24th international conference on machine learning. New York: ACM; 2007. p. 927–34.

    Chapter  Google Scholar 

  55. Davis JV, Kulis B, Jain P, Sra S, Dhillon IS. Information-theoretic metric learning. In: Proceedings of the 24th international conference on machine learning. New York: ACM; 2007. p. 209–16.

    Chapter  Google Scholar 

  56. Qamar AM, Gaussier E. Online and batch learning of generalized cosine similarities. In: Ninth IEEE international conference on data mining, ICDM’09. Piscataway: IEEE; 2009. p. 926–31.

    Chapter  Google Scholar 

  57. Ying Y, Li P. Distance metric learning with eigenvalue optimization. J Mach Learn Res. 2012;13:1–26.

    MathSciNet  MATH  Google Scholar 

  58. Lin T, Zha H, Lee SU. Riemannian manifold learning for nonlinear dimensionality reduction. In: Computer Vision–ECCV 2006. Berlin: Springer; 2006. p. 44–55.

    Google Scholar 

  59. Shen C, Kim J, Wang L, Van Den Hengel A. Positive semidefinite metric learning using boosting-like algorithms. J Mach Learn Res. 2012;13(1):1007–36.

    MathSciNet  MATH  Google Scholar 

  60. Shen C, Kim J, Wang L. A scalable dual approach to semidefinite metric learning. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). Piscataway: IEEE; 2011. p. 2601–08.

    Google Scholar 

  61. Bi J, Wu D, Lu L, Liu M, Tao Y, Wolf M. AdaBoost on low-rank PSD matrices for metric learning. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR). Piscataway: IEEE; 2011. p. 2617–24.

    Google Scholar 

  62. Weinberger KQ, Saul LK. Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res. 2009;10:207–44.

    MATH  Google Scholar 

  63. Weinberger KQ, Saul LK. Fast solvers and efficient implementations for distance metric learning. In: Proceedings of the 25th international conference on machine learning. New York: ACM; 2008. p. 1160–67.

    Chapter  Google Scholar 

  64. Weinberger KQ, Blitzer J, Saul LK. Distance metric learning for large margin nearest neighbor classification. In: Advances in neural information processing systems 2005. p. 1473–80.

    Google Scholar 

  65. Kumar MP, Torr PHS, Zisserman A. An invariant large margin nearest neighbour classifier. In IEEE 11th international conference on computer vision, ICCV 2007 2007. p. 1–8.

    Google Scholar 

  66. Torresani L, Lee KC. Large margin component analysis. In: Schölkopf B, Platt JC, Hoffman T, editors. Advances in neural information processing systems, vol. 19. Cambridge: MIT Press; 2007. p. 1385–92.

    Google Scholar 

  67. Wang J, Do HT, Woznica A, Kalousis A. Metric learning with multiple kernels. In: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F, Weinberger KQ, editors. Advances in neural information processing systems, vol. 24. New York: Curran Associates; 2011, p. 1170–78.

    Google Scholar 

  68. Hayat M, Bennamoun M, An S. Learning non-linear reconstruction models for image set classification. In: The IEEE conference on computer vision and pattern recognition (CVPR) 2014.

    Google Scholar 

  69. Hu J, Lu J, Tan YP. Discriminative deep metric learning for face verification in the wild. In: The IEEE conference on computer vision and pattern recognition (CVPR) 2014.

    Google Scholar 

  70. Ding S, Lin L, Wang G, Chao H. Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit. 2015;48(10):2993–3003.

    Article  Google Scholar 

  71. Zhang D, Song F, Xu Y, Liang Z. Other tensor analysis and further direction. In: Advanced pattern recognition technologies with applications to biometrics. Pennsylvania: IGI Global; 2009. p. 226–25.

    Chapter  Google Scholar 

  72. Kittler J, Hatef M, Duin RPW, Matas J. On combining classifiers. IEEE Trans Pattern Anal Mach Intell. 1998;20(3):226–239.

    Article  Google Scholar 

  73. Prabhakar S, Jain AK. Decision-level fusion in fingerprint verification. Pattern Recognit. 2002;35(4):861–874.

    Article  MATH  Google Scholar 

  74. Bigün ES, Bigün J, Duc B, Fischer S. Expert conciliation for multi modal person authentication systems by Bayesian statistics. In: International conference on audio-and video-based biometric person authentication. Berlin: Springer; 1997. p. 291–300.

    Chapter  Google Scholar 

  75. Ross A, Jain A. Information fusion in biometrics. Pattern Recognit Lett. 2003;24(13):2115–25.

    Article  Google Scholar 

  76. Snelick R, Indovina M, Yen J, Mink A. Multimodal biometrics: issues in design and testing. In: Proceedings of the 5th international conference on multimodal interfaces. New Yrok: ACM; 2003. p. 68–72.

    Chapter  Google Scholar 

  77. Bishop, CM, Nasser M. Nasrabadi. Pattern recognition and machine learning. New York: springer, 2006;4(4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd. & Higher Education Press, China

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Zhang, B., Zhang, D. (2022). Introduction. In: Information Fusion. Springer, Singapore. https://doi.org/10.1007/978-981-16-8976-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8976-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8975-8

  • Online ISBN: 978-981-16-8976-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics