Skip to main content

Health-Based Geographic Information Systems for Mapping and Risk Modeling of Infectious Diseases and COVID-19 to Support Spatial Decision-Making

  • Chapter
  • First Online:
Translational Informatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1368))

Abstract

Infectious diseases remain an essential global challenge in public health. For instance, novel coronavirus (COVID-19) has resulted in significant negative impacts on public health, infecting more than 214 million people and causing 4.47 million deaths worldwide as of August 2021. Geographic Information Systems have played an essential role in managing, storing, analyzing, and mapping disease and related risk information. This article provides an overview of a broad topic on applications of GIS into infectious disease research. Our review follows the framework of human–environment interactions, focusing on the environmental and social factors that cause the disease outbreak and the role of humans in disease control, including public health policies and interventions such as social distancing/face covering practice and mobility modeling. The work identifies key spatial decision-making issues where GIS becomes valued in the agenda for infectious disease research and highlights the importance of adopting science-based policies to protect the public during the current and future pandemics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ge L, Zhao Y, Sheng Z, Wang N, Zhou K, Mu X, Guo L, Wang T, Yang Z, Huo X (2016) Construction of a seasonal difference-geographically and temporally weighted regression (SD-GTWR) model and comparative analysis with GWR-based models for hemorrhagic fever with renal syndrome (HFRS) in Hubei Province (China). Int J Environ Res Public Health 13(11):1062

    Article  PubMed Central  Google Scholar 

  2. Hassan MS, Bhuiyan MAH, Tareq F, Bodrud-Doza M, Tanu SM, Rabbani KA (2021) Relationship between COVID-19 infection rates and air pollution, geo-meteorological, and social parameters. Environ Monit Assess 193(1):1–20

    Article  CAS  Google Scholar 

  3. Sun J, Wu S, Yan Z, Li Y, Yan C, Zhang F, Liu R, Du Z (2021) Using geographically weighted regression to study the seasonal influence of potential risk factors on the incidence of HFMD on the Chinese mainland. ISPRS Int J Geo Inf 10(7):448

    Article  Google Scholar 

  4. ODPHP (Office of Disease Prevention and Health Promotion) (2021) Immunization and infectious diseases. https://www.healthypeople.gov/node/3527/data-

  5. CDC (2021) COVID data tracker. https://covid.cdc.gov/covid-data-tracker/#datatracker-home. Accessed 31 Aug 2021

  6. Forster PM, Forster HI, Evans MJ, Gidden MJ, Jones CD, Keller CA, Lamboll RD, Quéré CL, Rogelj J, Rosen D, Schleussner C, Richardson TB, Smith CJ, Turnock ST (2020) Current and future global climate impacts resulting from COVID-19. Nat Clim Chang 10(10):913–919

    Article  CAS  Google Scholar 

  7. Le Quéré C, Peters GP, Friedlingstein P, Andrew RM, Canadell JG, Davis SJ, Jackson RB, Jones MW (2021) Fossil CO2 emissions in the post-COVID-19 era. Nat Clim Chang 11(3):197–199

    Article  CAS  Google Scholar 

  8. Shan Y, Ou J, Wang D, Zeng Z, Zhang S, Guan D, Hubacek K (2021) Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris agreement. Nat Clim Change 11(3):200–206. https://doi.org/10.1038/s41558-020-00977-5

    Article  CAS  Google Scholar 

  9. Koch T, Koch T (2005) Cartographies of disease: maps, mapping, and medicine. Esri Press, Redlands, CA, p 840

    Google Scholar 

  10. Gao S, Mioc D, Anton F, Yi X, Coleman DJ (2008) Online GIS services for mapping and sharing disease information. Int J Health Geogr 7(1):1–12

    Article  Google Scholar 

  11. Li Y, Zhang R, Zhao J, Molina MJ (2020) Understanding transmission and intervention for the COVID-19 pandemic in the United States. Sci Total Environ 748:141560. https://doi.org/10.1016/j.scitotenv.2020.141560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye X, Du J, Gong X, Na S, Li W, Kudva S (2021) Geospatial and semantic mapping platform for massive COVID-19 scientific publication search. J Geovisualiz Spatial Anal 5(1):1–12

    Google Scholar 

  13. Zhang R, Li Y, Zhang AL, Wang Y, Molina MJ (2020) Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc Natl Acad Sci U S A 117:14857–14863. https://doi.org/10.1073/pnas.2009637117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Ji Z, Zheng Y, Ye X, Li D (2020) Evaluating the effect of city lock-down on controlling COVID-19 propagation through deep learning and network science models. Cities 107:102869

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang X, Zhang ZK, Wang W, Hou D, Xu J, Ye X, Li S (2021) Multiplex network reconstruction for the coupled spatial diffusion of infodemic and pandemic of COVID-19. Int J Dig Earth 14(4):401–423

    Article  Google Scholar 

  16. Zhang Z, Demšar U, Rantala J, Virrantaus K (2014) A fuzzy multiple-attribute decision-making modelling for vulnerability analysis on the basis of population information for disaster management. Int J Geogr Inf Sci 28(9):1922–1939

    Article  Google Scholar 

  17. Zhang Z, Demšar U, Wang S, Virrantaus K (2018) A spatial fuzzy influence diagram for modelling spatial objects’ dependencies: a case study on tree-related electric outages. Int J Geogr Inf Sci 32(2):349–366

    Article  Google Scholar 

  18. Zhang Z, Hu H, Yin D, Kashem S, Li R, Cai H et al (2018) A cyberGIS-enabled multi-criteria spatial decision support system: a case study on flood emergency management. Int J Dig Earth

    Google Scholar 

  19. Zhang Z, Laakso T, Wang Z, Pulkkinen S, Ahopelto S, Virrantaus K et al (2020) Comparative study of AI-based methods—application of analyzing inflow and infiltration in sanitary sewer subcatchments. Sustainability 12(15):6254

    Article  Google Scholar 

  20. Zhang Z, Zou L, Li W, Usery L, Albrecht J, Armstrong M (2021) Cyberinfrastructure and intelligent spatial decision support systems. Trans GIS 25(4):1651–1653

    Article  Google Scholar 

  21. Zhang Z, Yin D, Virrantaus K, Ye X, Wang S (2021) Modeling human activity dynamics: an object-class oriented space–time composite model based on social media and urban infrastructure data. Computat Urban Sci 1(1):1–13

    CAS  Google Scholar 

  22. Zhao J, Zhang Z, Sullivan CJ (2019) Identifying anomalous nuclear radioactive sources using Poisson kriging and mobile sensor networks. PLoS One 14(5):e0216131

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cromley EK, McLafferty SL (2011) GIS and public health. Guilford Press, New York

    Google Scholar 

  24. Stopka TJ, Goulart MA, Meyers DJ, Hutcheson M, Barton K, Onofrey S, Church D, Donahue A, Chui KK (2017) Identifying and characterizing hepatitis C virus hotspots in Massachusetts: a spatial epidemiological approach. BMC Infect Dis 17(1):1–11

    Article  Google Scholar 

  25. Rao HX, Zhang X, Zhao L, Yu J, Ren W, Zhang XL, Ma YC, Shi Y, Ma BZ, Wang X, Wei Z (2016) Spatial transmission and meteorological determinants of tuberculosis incidence in Qinghai Province, China: a spatial clustering panel analysis. Infect Dis Poverty 5(1):1–13

    Article  CAS  Google Scholar 

  26. Gwitira I, Mukonoweshuro M, Mapako G, Shekede MD, Chirenda J, Mberikunashe J (2020) Spatial and spatio-temporal analysis of malaria cases in Zimbabwe. Infect Dis Poverty 9(1):1–14

    Article  Google Scholar 

  27. Gwitira I, Murwira A, Mberikunashe J, Masocha M (2018) Spatial overlaps in the distribution of HIV/AIDS and malaria in Zimbabwe. BMC Infect Dis 18(1):1–10

    Article  Google Scholar 

  28. Aturinde A, Farnaghi M, Pilesjö P, Mansourian A (2019) Spatial analysis of HIV-TB co-clustering in Uganda. BMC Infect Dis 19(1):1–10

    Article  Google Scholar 

  29. Yu G, Yang R, Wei Y, Yu D, Zhai W, Cai J, Long B, Chen S, Tang J, Zhong G, Qin J (2018) Spatial, temporal, and spatiotemporal analysis of mumps in Guangxi Province, China, 2005–2016. BMC Infect Dis 18(1):1–13

    Article  CAS  Google Scholar 

  30. Lai PC, Wong CM, Hedley AJ, Lo SV, Leung PY, Kong J, Leung GM (2004) Understanding the spatial clustering of severe acute respiratory syndrome (SARS) in Hong Kong. Environ Health Perspect 112(15):1550–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee SS, Wong NS (2011) The clustering and transmission dynamics of pandemic influenza A (H1N1) 2009 cases in Hong Kong. J Infect 63(4):274–280

    Article  PubMed  Google Scholar 

  32. Lantos PM, Nigrovic LE, Auwaerter PG, Fowler VG Jr, Ruffin F, Brinkerhoff RJ, Reber J, Williams C, Broyhill J, Pan WK, Gaines DN (2015) Geographic expansion of Lyme disease in the southeastern United States, 2000–2014. Open Forum Infect Dis 2(4):ofv143. Oxford University Press

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang AC, Wen TH, Shih CC, Fang CT (2011) Differentiating geographic patterns of human immunodeficiency virus (HIV) infection with different risk factors in northern Taiwan: 1997–2008. Appl Geogr 31(2):519–524

    Article  Google Scholar 

  34. Basara HG, Yuan M (2008) Community health assessment using self-organizing maps and geographic information systems. Int J Health Geogr 7(1):1–8

    Article  Google Scholar 

  35. Dong W, Yang K, Xu Q, Liu L, Chen J (2017) Spatio-temporal pattern analysis for evaluation of the spread of human infections with avian influenza a (H7N9) virus in China, 2013–2014. BMC Infect Dis 17(1):1–13

    Article  Google Scholar 

  36. Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2005) Geographic information systems and science. John Wiley & Sons, London

    Google Scholar 

  37. Saengnill W, Charoenjit K, Hrimpeng K, Jittimanee J (2020) Mapping the probability of detecting Burkholderia pseudomallei in rural rice paddy soil based on indicator kriging and spatial soil factor analysis. Trans R Soc Trop Med Hyg 114(7):521–530

    Article  PubMed  Google Scholar 

  38. Perez AM (2004) Probability co-kriging estimation of foot and mouth disease spatial distribution in Pakistan. GISVET’s 43

    Google Scholar 

  39. Siya A, Kalule BJ, Ssentongo B, Lukwa AT, Egeru A (2020) Malaria patterns across altitudinal zones of mount Elgon following intensified control and prevention programs in Uganda. BMC Infect Dis 20(1):1–16

    Article  Google Scholar 

  40. Bhunia GS, Kesari S, Chatterjee N, Kumar V, Das P (2013) Spatial and temporal variation and hotspot detection of kala-azar disease in Vaishali district (Bihar), India. BMC Infect Dis 13(1):1–12

    Article  Google Scholar 

  41. Liu K, Cai J, Wang S, Wu Z, Li L, Jiang T, Chen B, Cai G, Jiang Z, Chen Y, Wang Z (2016) Identification of distribution characteristics and epidemic trends of hepatitis E in Zhejiang Province, China from 2007 to 2012. Sci Rep 6(1):1–11

    CAS  Google Scholar 

  42. Inaida S, Shobugawa Y, Matsuno S, Saito R, Suzuki H (2013) The south to north variation of norovirus epidemics from 2006–07 to 2008–09 in Japan. PLoS One 8(8):e71696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ding P, Li X, Jia Z, Lu Z (2017) Multidrug-resistant tuberculosis (MDR-TB) disease burden in China: a systematic review and spatio-temporal analysis. BMC Infect Dis 17(1):1–29

    Article  Google Scholar 

  44. Török TJ, Kilgore PE, Clarke MJ, Holman RC, Bresee JS, Glass RI (1997) Visualizing geographic and temporal trends in rotavirus activity in the United States, 1991 to 1996. Pediatr Infect Dis J 16(10):941–946

    Article  PubMed  Google Scholar 

  45. Sakai T, Suzuki H, Sasaki A, Saito R, Tanabe N, Taniguchi K (2004) Geographic and temporal trends in influenzalike illness, Japan, 1992–1999. Emerg Infect Dis 10(10):1822

    Article  PubMed  PubMed Central  Google Scholar 

  46. World Health Organization (2021) WHO coronavirus dashboard. https://covid19.who.int. Accessed 31 Aug 2021

  47. Johns Hopkins University Center for Systems Science and Engineering (2021) Covid-19 dashboard. https://coronavirus.jhu.edu/map.html. Accessed 31 Aug 2021

  48. NHS (2021) NHS COVID-19 app. https://covid19.nhs.uk. Accessed 1 Sept 2021

  49. Alesheikh AA, Helali H, Behroz HA (2002) Web GIS: technologies and its applications. In Symposium on geospatial theory, processing and applications (Vol. 15)

    Google Scholar 

  50. Li YP, Fang LQ, Gao SQ, Wang Z, Gao HW, Liu P, Wang ZR, Li YL, Zhu XG, Li XL, Xu B (2013) Decision support system for the response to infectious disease emergencies based on WebGIS and mobile services in China. PLoS One 8(1):e54842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang K, Sun LP, Huang YX, Yang GJ, Wu F, Hang DR, Li W, Zhang JF, Liang YS, Zhou XN (2012) A real-time platform for monitoring schistosomiasis transmission supported by Google earth and a web-based geographical information system. Geospat Health 6(2):195–203

    Article  PubMed  Google Scholar 

  52. Lu X (2009) Web GIS based information visualization for infectious disease prevention. In 2009 Third International Symposium on Intelligent Information Technology Application (Vol. 1, pp. 148–151). IEEE

    Google Scholar 

  53. Al Manir MS, Brenas JH, Baker CJ, Shaban-Nejad A (2018) A surveillance infrastructure for malaria analytics: provisioning data access and preservation of interoperability. JMIR Public Health Surveill 4(2):e10218

    Article  PubMed  PubMed Central  Google Scholar 

  54. Patrick R, Greenberg A, Magnus M, Opoku J, Kharfen M, Kuo I (2017) Development of an HIV testing dashboard to complement the HIV care continuum among MSM, PWID, and heterosexuals in Washington, DC, 2007–2015. J Acquir Immune Defic Syndr 75(Suppl 3):S397

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cheng CK, Ip DK, Cowling BJ, Ho LM, Leung GM, Lau EH (2011) Digital dashboard design using multiple data streams for disease surveillance with influenza surveillance as an example. J Med Internet Res 13(4):e85

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ravinder R, Singh S, Bishnoi S, Jan A, Sharma A, Kodamana H, Krishnan NA (2020) An adaptive, interacting, cluster-based model for predicting the transmission dynamics of COVID-19. Heliyon 6(12):e05722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang H, Hu H, Li B, Zhang Z, Wang S, Lin T (2021) Understanding the non-stationary relationships between corn yields and meteorology via a spatiotemporally varying coefficient model. Agric For Meteorol 301:108340

    Article  Google Scholar 

  58. Wu X, Zhang J (2021) Exploration of spatial-temporal varying impacts on COVID-19 cumulative case in Texas using geographically weighted regression (GWR). Environ Sci Pollut Res:1–15

    Google Scholar 

  59. Hong Z, Mei C, Wang H, Du W (2021) Spatiotemporal effects of climate factors on childhood hand, foot, and mouth disease: a case study using mixed geographically and temporally weighted regression models. Int J Geogr Inf Sci:1–23

    Google Scholar 

  60. Hu B, Qiu W, Xu C, Wang J (2020) Integration of a Kalman filter in the geographically weighted regression for modeling the transmission of hand, foot and mouth disease. BMC Public Health 20(1):1–15

    Article  CAS  Google Scholar 

  61. Dong W, Yang P, Liao H, Wang X, Wang Q (2016) The effects of weather factors on hand, foot and mouth disease in Beijing. Sci Rep 6(1):1–9

    CAS  Google Scholar 

  62. Hu M, Li Z, Wang J, Jia L, Liao Y, Lai S, Guo Y, Zhao D, Yang W (2012) Determinants of the incidence of hand, foot and mouth disease in China using geographically weighted regression models. PLoS One 7(6):e38978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang D, Xu C, Wang J, Zhao Y (2017) Spatiotemporal epidemic characteristics and risk factor analysis of malaria in Yunnan Province, China. BMC Public Health 17(1):1–10

    Article  Google Scholar 

  64. Lak A, Sharifi A, Badr S, Zali A, Maher A, Mostafavi E, Khalili D (2021) Spatio-temporal patterns of the COVID-19 pandemic, and place-based influential factors at the neighborhood scale in Tehran. Sustain Cities Soc:103034

    Google Scholar 

  65. Mohidem NA, Osman M, Hashim Z, Muharam FM, Mohd Elias S, Shaharudin R (2021) Association of sociodemographic and environmental factors with spatial distribution of tuberculosis cases in Gombak, Selangor, Malaysia. PLoS One 16(6):e0252146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bazant MZ, Bush WM (2021) A guideline to limit indoor airborne transmission of COVID-19. Proc Natl Acad Sci U S A 118(17):e2018995118. https://doi.org/10.1073/pnas.2018995118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fowlkes A, Gaglani M, Groover K, Thiese MS, Tyner H, Ellingson K (2021) Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection among frontline workers before and during B.1.617.2 (Delta) variant predominance — eight U.S. Locations, December 2020–August 2021. MMWR Morb Mortal Wkly Rep 70:1167–1169. https://doi.org/10.15585/mmwr.mm7034e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF (2021) Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. https://doi.org/10.1038/s41577-021-00592-1

  69. Rosenkrantz L, Schuurman N, Bell N, Amram O (2021) The need for GIScience in mapping COVID-19. Health Place 67:102389

    Article  PubMed  Google Scholar 

  70. Calvo RA, Deterding S, Ryan RM (2020) Health surveillance during covid-19 pandemic. BMJ:369

    Google Scholar 

  71. Colizza V, Grill E, Mikolajczyk R, Cattuto C, Kucharski A, Riley S, Kendall M, Lythgoe K, Bonsall D, Wymant C, Abeler-Dörner L (2021) Time to evaluate COVID-19 contact-tracing apps. Nat Med 27(3):361–362

    Article  CAS  PubMed  Google Scholar 

  72. Li J, Guo X (2020) COVID-19 contact-tracing apps: a survey on the global deployment and challenges. arXiv preprint arXiv:2005.03599

    Google Scholar 

  73. Huang X, Li Z, Lu J, Wang S, Wei H, Chen B (2020) Time-series clustering for home dwell time during COVID-19: what can we learn from it? ISPRS Int J Geo Inf 9(11):675

    Article  Google Scholar 

  74. Hadjidemetriou GM, Sasidharan M, Kouyialis G, Parlikad AK (2020) The impact of government measures and human mobility trend on COVID-19 related deaths in the UK. Transport Res Interdisc Perspect 6:100167

    Google Scholar 

  75. Kraemer MU, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, Du Plessis L, Faria NR, Li R, Hanage WP, Brownstein JS (2020) The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368(6490):493–497

    Article  CAS  PubMed  Google Scholar 

  76. Huang X, Li Z, Jiang Y, Li X, Porter D (2020) Twitter reveals human mobility dynamics during the COVID-19 pandemic. PLoS One 15(11):e0241957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bargain O, Aminjonov U (2020) Trust and compliance to public health policies in times of COVID-19. J Public Econ 192:104316

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang X, Li Z, Jiang Y, Ye X, Deng C, Zhang J, Li X (2021) The characteristics of multi-source mobility datasets and how they reveal the luxury nature of social distancing in the US during the COVID-19 pandemic. Int J Dig Earth 14(4):424–442

    Article  Google Scholar 

  79. Zhu D, Ye X, Manson S (2021) Revealing the spatial shifting pattern of COVID-19 pandemic in the United States. Sci Rep 11(1):1–9

    CAS  Google Scholar 

  80. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, Leskovec J (2021) Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589(7840):82–87

    Article  CAS  PubMed  Google Scholar 

  81. Andersen MS, Bento AI, Basu A, Marsicano C, Simon K (2021) College openings, mobility, and the incidence of COVID-19 cases. medRxiv:2020–2009

    Google Scholar 

  82. Xiong C, Hu S, Yang M, Luo W, Zhang L (2020) Mobile device data reveal the dynamics in a positive relationship between human mobility and COVID-19 infections. Proc Natl Acad Sci U S A 117(44):27087–27089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kupfer JA, Li Z, Ning H, Huang X (2021) Using Mobile device data to track the effects of the COVID-19 pandemic on spatiotemporal patterns of National Park Visitation. Sustainability 13(16):9366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the COVID-19 Research Projects of West China Hospital Sichuan University (Grant no. HX-2019-nCoV-057), the Regional Innovation Cooperation between Sichuan and Guangxi Provinces (2020YFQ0019), and the National Natural Science Foundation of China (32070671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bairong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, X. et al. (2022). Health-Based Geographic Information Systems for Mapping and Risk Modeling of Infectious Diseases and COVID-19 to Support Spatial Decision-Making. In: Shen, B. (eds) Translational Informatics. Advances in Experimental Medicine and Biology, vol 1368. Springer, Singapore. https://doi.org/10.1007/978-981-16-8969-7_8

Download citation

Publish with us

Policies and ethics