Skip to main content

Some New Data on the Spectral-Kinetic Characteristics of High-Temperature Ultraporous Heterogeneous Composites

  • Conference paper
  • First Online:
Advances in Theory and Practice of Computational Mechanics

Abstract

Capabilities of an original combined statistical simulation and mathematical model that covers the structure and a number of physical properties of ultraporous fibrous and reticulated high-temperature materials are demonstrated. The structure of the local electromagnetic transmission, absorption and scattering spectra of a number of available and hypothetical materials is investigated. In some reticulated materials, the order-of-magnitude catastrophe in the absorption spectrum is observed. Such catastrophe means a sharp large (by several orders of the magnitude) broadband variation of the spectral absorption coefficient unrelated to the resonance phenomena in absorption but caused by the variation of the specific electrical resistance of the skeleton material. A fairly wide resonance region in the transmission spectrum of fibrous material with properties close to that of the amorphous quartz is detected. A parameter has been identified affecting the location of this region. For the phase scattering function (indicatrix) of the representative elementary volumes of the model of such a material, an approximation based on the known distributions that take into account the fine structure inherent in the indicatrix is obtained. It is shown that the phase scattering function of the material is not reduced as a whole to the known distributions. For this indicatrix, distributions of a new type that extend the class of model indicatrices are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Material anisotropy indicator

D :

Spectral-transport coefficients of radiation diffusion

d :

Diameter

g :

Henyey-Greenstein distribution parameter

k ρ e :

Multiplier of electrical resistivity

l :

Length of a fiber (strut) fragment in a volume element, mean free path of photons

L :

Size of a volume element along a coordinate direction

M:

Mean value, mathematical expectation

N V :

Amount of a statistical sampling of representative elements

n :

Refractive index

P :

Probability

p :

Phase scattering function

R :

Radius

dV :

Amount of volume element

α, β :

Volumetric absorption and scattering coefficients

Δλ:

Scan step

ε :

Dielectric constant

θ,µ = cos θ:

Polar angle, angle of scattering and its cos

λ :

Wavelength

ρ :

Effective mass density, electrical resistivity

σ:

Standard deviation

φ :

Azimuth

ψ :

Density of probability

b :

Ball (knot), back

d :

Diameter

e:

Electrical

f :

Forward

HG:

Henyey-Greenstein distribution

i :

Incidence

l :

Length

t :

Type

V :

Representative element volum

x, y, z :

Coordinat directions

λ :

Spectral

\(\left\langle \ldots \right\rangle\) :

Averaging

int:

Integer part

References

  1. Meguid, S.A. (ed.): Advances in Nanocomposites: Modeling, Characterization and Applications. Springer, Switzerland (2016)

    Google Scholar 

  2. Delfini, A., Albano, M., Vricella, A., Santoni, F., Rubini, G., Pastore, R., Marchetty, M.: Advanced radar absorbing ceramic-based materials for multifunctional applications in space environment. Materials 11(9), 1730–1740 (2018)

    Google Scholar 

  3. Wen, C., Yan,Y. (eds.): Advanced in heat transfer and thermal engineering.In: Proceedings of UKHT2019, Springer, Sinngapore (2021).

    Google Scholar 

  4. Liou, K.N.: An introduction to atmospheric radiation, 2nd edn. Academic Press, New York, London (2002)

    Google Scholar 

  5. Alifanov, O.M., Cherepanov, V.V.: Methods of investigation and prediction of the properties of highly porous thermalprotection materials. MAI Publ. House, Moscow (in Russian) (2014)

    Google Scholar 

  6. Modest, M.F.: Radiative heat transfer, 3rd edn. Academic Press, New York (2016)

    MATH  Google Scholar 

  7. Howell, J.R, Mengüç, M.P., Siegel, R: Thermal radiation heat transfer. Seventh edn. Taylor & Francis Group, LLC, Boca Raton (2020).

    Google Scholar 

  8. Zhang, Z.M.: Nano/microscale heat transfer. Springer, Springer MES eBook (2020)

    Book  Google Scholar 

  9. Alifanov, O.M., Budnik, S.A., Mikhaylov, V.V., Nenarokomov, A.V., Titov, D.M., Yudin, V.M.: An experimental-computational system for materials thermal properties determination and its application for spacecraft structures testing. Acta Astronaut. 61(1–6), 341–351 (2007)

    Article  Google Scholar 

  10. Coquard, R., Rochais, D., Baillis, D.: Experimental investigation of the coupled conductive and radiative heat transfer in metallic/ceramic foams. Int. J. Heat Mass Transf. 52(21), 4907–4918 (2009)

    Article  Google Scholar 

  11. Rochais, D., Coquard, R., Baillis, D.: Microscopic thermal diffusivity measurements of ceramic and metallic foams lumps in temperature. Int. J. Therm. Sci. 98, 179–187 (2015)

    Article  Google Scholar 

  12. Tomas, J., Öchsner, A., Merkel, M.: Experimental study of thermal properties of hollow sphere structures. In: Proceedings DDF407, 185–191 (2021).

    Google Scholar 

  13. Öchsner, A., Murch, G.E., de Lemos, M.J.S. (eds.): Cellular and porous materials: thermal properties simulation and prediction. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  14. Sacadura, J.-F.: Thermal radiative properties of complex media: theoretical prediction versus experimental identification. Heat Transfer Eng. 32, 754–770 (2011)

    Article  Google Scholar 

  15. Alifanov, O.M., Cherepanov, V.V.: Mathematical simulation of high-porosity fibrous materials and determination of their physical properties. High Temp. 47, 438–447 (2009)

    Article  Google Scholar 

  16. Kamdem, H.T.T.: Radiative Characteristics of high-porosity media containing randomly oriented fibers in space. J. Therm. Sci. and Eng. Appl. 9(2), 021014–021023 (2017)

    Article  Google Scholar 

  17. Cunsolo, S., Baillis, D., Blanco, N.: Improved Monte Carlo methods for computational modelling of thermal raadiation applied to porous cellular materials. Int. J. Therm. Sci. 137(9), 161–179 (2019)

    Article  Google Scholar 

  18. Petrasch, J., Wyss, P., Steinfeld, A.: Tomography-based Monte-Carlo determination of radiative properties of reticulate porous ceramics. J. Quant. Spectroscopy Rad. Transf. 105(2), 180–197 (2007)

    Article  Google Scholar 

  19. Akolkar, A., Rahmatian, N., Unterberger, S.H., Petracsh, J.: Tomography based analysis of conduction anisotropy in fibrous insulation. Int. J. Heat Mass Transf. 108, 1740–1749 (2017)

    Article  Google Scholar 

  20. Howell, J.R, Daun, K. The past and future of the Monte Carlo method in thermal radiation transfer. ASME J. Heat Transf. HT-21–1121 (2021).

    Google Scholar 

  21. Chapman, S., Cowling, T.G.: The mathematical theory of non – uniform gases, 2nd edn. University Press, Cambridge (1952)

    MATH  Google Scholar 

  22. Cherepanov, V.V., Alifanov, O.M.: Modelling techniques for ultra – porous heat – protective materials spectral properties. Comp. Appl. Math. 36, 281–300 (2017)

    Article  MathSciNet  Google Scholar 

  23. Lind, A.C., Greenberg, J.M.: Electromagnetic scattering by obliquely oriented cylinders. J Appl. Phys. 37, 3195–3203 (1966)

    Article  Google Scholar 

  24. Bohren, C.F., Huffman, D.R.: Absorption and scattering of light by small particles. Wiley, New York (1983)

    Google Scholar 

  25. Alifanov, O.M., Cherepanov, V.V., Morzhukhina, A.V.: Complex study of the physical properties of reticulated vitreous carbon. J. Eng. Phys. Thermophysics 88, 134–144 (2015)

    Article  Google Scholar 

  26. Jackson, J.D.: Classical electrodynamics. Wiley, New York (1962)

    MATH  Google Scholar 

  27. Mironov, R.A., Zabezhailov, M.O., Cherepanov, V.V., Rusin, M.Yu.: Transient-radiative-conductive heat transfer modeling in constructional semitransparent silica ceramics. Int. J. Heat Mass Transf. 127, 1230–1238 (2018)

    Google Scholar 

  28. Cherepanov, V.V., Shchurik, A.G., Mironov, R.A.: Optical properties of domestic reticulated vitreous carbon and its base. Opt. Spectrosc. 128, 536–543 (2020)

    Article  Google Scholar 

  29. Alifanov, O.M., Cherepanov, V.V., Shchurik, A.G., Mironov, R.A.: Calculation of characteristics of reticular materials based on a glassy carbon by its optical constants determined experimentally. J. Eng. Phys. Thermophys 93(3), 710–718 (2020)

    Article  Google Scholar 

  30. Moiseev, S.S., Petrov, V.A., Stepanov, S.V.: Use of a radiation diffusion model for determination of optical and thermal radiative properties of anisotropic silica fiber thermal insulation. Int. J. Thermophys. 17, 515–525 (1996)

    Article  Google Scholar 

  31. Cherepanov, V.V.: Modeling and optimization of properties of domestic mullite-corundum composites. High Temp. 59(3), 312–320 (2021)

    Google Scholar 

  32. Ermakov, S. M.: The Monte Carlo method and related questions. Second edn., Nauka, Moscow (In Russian) (1975). Version: Ermakov, S.M.: Die Monte-Carlo methode und verwandte fragen. First edn., Oldenbourg Verlag, Munich-Vienna (in German) (1975)

    Google Scholar 

  33. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo methods. Wiley, Hoboken, New Jersey (2011)

    Book  Google Scholar 

  34. Banner, D., Klarsfeld, S., Langlais, C.: Temperature dependence of the optical characteristics of semitransparent porous media. High Temp.-High Press. 21, 347–354 (1989)

    Google Scholar 

  35. Reddy, B.S.R (ed.): Advances in nanocomposites – Synthesis, characterization and industrial applications. InTech, Rijeka, Croatia (2011)

    Google Scholar 

  36. Alifanov, O.M.: Inverse heat transfer problems. Springer, Berlin, New York (1994)

    Book  Google Scholar 

  37. Larsen, E.W., Morel, J.E.: Advances in discrete-ordinates methodology. In: Azmy, Y., Sartory E. (eds.): Nuclear computational science, pp. 1–84. Springer, Dordrecht, Heidelberg, London, New York (2010)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research, grant no. 20-08-00465.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery V. Cherepanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cherepanov, V.V., Alifanov, O.M. (2022). Some New Data on the Spectral-Kinetic Characteristics of High-Temperature Ultraporous Heterogeneous Composites. In: Favorskaya, M.N., Nikitin, I.S., Severina, N.S. (eds) Advances in Theory and Practice of Computational Mechanics. Smart Innovation, Systems and Technologies, vol 274. Springer, Singapore. https://doi.org/10.1007/978-981-16-8926-0_17

Download citation

Publish with us

Policies and ethics