Skip to main content

Advances in Computational Study of Dynamic Systems

  • Conference paper
  • First Online:
Advances in Theory and Practice of Computational Mechanics

Abstract

The chapter includes a brief description of chapters that contribute computational dynamics and numerical study of dynamic systems. The first part considers the recent results in computational fluid dynamics. The second part includes a numerical simulation of physical and chemical processes in gases and liquids. The third part presents some results in computational solid mechanics. The fourth part provides a numerical study of dynamic systems. The fifth part focuses on digital technology in aerospace education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagdasaryan, G., Mikilyan, M.: Effects of Magnetoelastic Interactions in Conductive Plates and Shells. Springer, Cham (2016)

    Book  Google Scholar 

  2. Baghdasaryan, G., Mikilyan, M., Vardanyan, I., Panteleev, A.: Influence of supersonic flow on nonlinear oscillations of a cylindrical shell. IOP Conf. Series: J. Phys.: Conf. Series 1474, 012007 (2020)

    Google Scholar 

  3. Molchanov, A.M., Bykov, L.V., Yanyshev, D.S.: Effective turbulence model for high speed flow for general engineering applications. J. Eng. Appl. Sci. 13, 5556–5560 (2018)

    Google Scholar 

  4. Ladonkina, M.E., Neklyudova, O.A., Tishkin, V.F.: The use of the discontinuous Galerkin method in solving problems of hydrodynamics. Math. Mode. 26(1), 17–32 (2014)

    MATH  Google Scholar 

  5. Ladonkina, M.E., Neklyudova, O.A., Tishkin, V.F.: Construction of a limiter for the discontinuous Galerkin method based on averaging the solution. Math. Model. 30(5), 99–116 (2018)

    Google Scholar 

  6. Borovikov, S.N., Kryukov, I.A., Ivanov, I.E.: An approach for Delaunay tetrahedralization of bodies with curved boundaries. In: Hanks, B.W. (ed.) Proceedings of the 14th International Meshing Roundtable, pp. 221–237. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  7. Ermakov, M.K., Kryukov, I.A.: Supercomputer modeling of flow past hypersonic flight vehicles. J. Phys. Conf. Series 815, 012016 (2017)

    Google Scholar 

  8. Gushchin, V.: On a one family of quasi monotone finite-difference schemes of the second order of approximation. Math. Models Comput. Simul. 8, 487–496 (2016)

    Article  MathSciNet  Google Scholar 

  9. Gushchin, V., Smirnova, I.: Mathematical modeling of spot dynamics in a stratified medium. Comput. Math. Math. Phys. 60(5), 879–894 (2020)

    Article  MathSciNet  Google Scholar 

  10. Maksimov, F.A., Ostapenko, N.A., Zubin, M.A.: Conical flows near V-shaped wings with attached shock waves on leading edges. Progress Flight Phys. 7, 453–474 (2015)

    Google Scholar 

  11. Zubin, M.A., Maksimov, F.A., Ostapenko, N.A.: Flow-around modes for a rhomboid wing a stall vortex in the shock layer. Dokl. Phys. 62(12), 533–537 (2017)

    Article  Google Scholar 

  12. Shevelev, Yu.D.: Application of 3-D quasi-conformal mappings for grid generation. Comput. Math. Math. Phys. 58(8), 1280–1286 (2018)

    Article  MathSciNet  Google Scholar 

  13. Shevelev, Yu.D.: 3-D Quasi-conformal mappings and grid generation. In: Favorskaya, M.N., Favorskaya, A.V., Petrov, I.B., Jain, L.C. (eds.) Smart Modelling for Engineering Systems. SIST, vol. 215, pp. 65–78. Springer, Singapore (2021)

    Chapter  Google Scholar 

  14. Godunov, S.K., Klyuchinskii, D.V., Fortova, S.V., Shepelev, V.V.: Experimental studies of difference gas dynamics models with shock waves. Comput. Math. Math. Phys. 58(8), 1201–1216 (2018)

    Article  MathSciNet  Google Scholar 

  15. Godunov, S., Denisenko, V., Klyuchinskiy, D., Fortova, S., Shepelev, V.: Study of entropy properties of a linearized version of Godunov’s method. Comput. Math. Math. Phys. 60(8), 628–640 (2020)

    Article  MathSciNet  Google Scholar 

  16. Babakov, A.V.: Numerical simulation of flow structure near descent module in Mars atmosphere. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L., (eds.), Applied Mathematics and Computational Mechanics for Smart Applications 2020. SIST, vol. 217, pp. 25–34. Springer Nature Singapore Pte Ltd (2021)

    Google Scholar 

  17. Kotelnikov, V.A., Kotelnikov, M.V.: Current–voltage characteristics of a flat probe in a rarified plasma flow. High Temp. 54, 20–25 (2016)

    Article  Google Scholar 

  18. Kotelnikov, V.A., Kotelnikov, M.V.: Use of the Bohm’s formula and its analogues in probe diagnostics. High Temp. 55, 477–480 (2017)

    Article  Google Scholar 

  19. Syzranova, N.G., Andrushchenko, V.A.: Aspects of meteoroids flight in the Earth’s atmosphere. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Applied Mathematics and Computational Mechanics for Smart Applications. SIST, vol. 217, pp. 13–23. Springer, Singapore (2021)

    Chapter  Google Scholar 

  20. Stupitsky, E.L.: Specific features of explosive plasma flows in the near-earth space. Geomag. Aeron. 46(1), 26–43 (2006)

    Article  Google Scholar 

  21. Moiseeva, D.S., Motorin, A.A., Stupitsky, E.L.: Numerical studies of the parameters of the perturbed region formed in the lower ionosphere under the action of a directed radio waves flux from a terrestrial source. Comput. Res. Model. 10(5), 679–708 (2018)

    Article  Google Scholar 

  22. Borzenko, E.I., Shrager, G.R.: Effect of the type of boundary conditions on the three-phase contact line on the flow characteristics during filling of the channel. J. Appl. Mech. Tech. Phys. 56(2), 167–176 (2015)

    Article  Google Scholar 

  23. Borzenko, E.I., Shrager, G.R.: Simulating injection molding of semi-crystalline polymers: effect of crystallization on the dynamics of channel filling. Interfacial Phenom. Heat Transf. 8(3), 225–233 (2020)

    Article  Google Scholar 

  24. Alifanov, O.M., Cherepanov, V.V., Shchurik, A.G., Mironov, R.A.: Calculation of characteristics of reticular materials based on a glassy carbon by its optical constants determined experimentally. J. Eng. Phys. Thermophys 93(3), 710–718 (2020)

    Article  Google Scholar 

  25. Kondratenko, V.S., Visakanov, A.A., Sakunenko, Yu.I., Tretiyakova, O.N., Molotkov, A.A., Tikmenov, V.N.: Development of metal-hybrid thermal interface: experimental research and mathematical modeling. Adv. Appl. Phys. 2, 166–173 (2018)

    Google Scholar 

  26. Golubev, V.I., Khokhlov, N.I., Nikitin, I.S., Churyakov, M.A.: Application of compact grid-characteristic schemes for acoustic problems. J. Phys. Conf. Ser. 1479(1), paper â„– 012058 (2020)

    Google Scholar 

  27. Petrov, I.B., Golubev, V.I., VYu., Petrukhin, Nikitin, I.S.: Simulation of seismic waves in anisotropic media. Dokl. Math. 103(3), 59–64 (2021)

    Google Scholar 

  28. Favorskaya, A.V., Petrov, D.I., Petrov, I.B., Khokhlov, N.I.: Numerical solution of seismic exploration problems in the Arctic region by applying the grid-characteristic method. Comput. Math. Math. Phys. 56(6), 1128–1141 (2016)

    Article  MathSciNet  Google Scholar 

  29. Nikitin, I.S., Golubev, V.I., Golubeva, Y.A., Miryakha, V.A.: Numerical comparison of different approaches for the fractured medium simulation. In: Favorskaya, M.N., Favorskaya, A.V., Petrov, I.B., Jain, L.C. (eds.) Smart Modelling For Engineering Systems. SIST, vol. 214, pp. 87–99. Springer, Singapore (2021)

    Chapter  Google Scholar 

  30. Kuznetsov, E.B., Leonov, S.S.: Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points. Comput. Math. Math. Phys. 57(6), 931–952 (2017)

    Article  MathSciNet  Google Scholar 

  31. Kuznetsov, E.B., Leonov, S.S.: Examples of parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points. Comput. Math. Math. Phys. 30(6), 881–897 (2018)

    Article  MathSciNet  Google Scholar 

  32. Rybakov, K.A.: Spectral method of analysis and optimal estimation in linear stochastic systems. Int. J. Model. Simul. Sci. Comput. 11(3), 2050022 (2020)

    Article  Google Scholar 

  33. Rybakov, K.A.: Using spectral form of mathematical description to represent Stratonovich iterated stochastic integrals. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Computational Mechanics and Numerical Simulation. SIST, vol. 217, pp. 287–304. Springer, Singapore (2021)

    Google Scholar 

  34. Panteleev, A.V., Lobanov, A.V.: Application of the mini-batch adaptive method of random search (MAMRS) in problems of optimal in mean control of the trajectory pencils. J. Phys. Conf. Ser. 1925, 012006 (2021)

    Google Scholar 

  35. Panovskiy, V.N., Panteleev, A.V.: Meta-heuristic interval methods of search of optimal in average control of nonlinear determinate systems with incomplete information about its parameters. J. Comput. Syst. Sci. Int. 56(1), 52–63 (2017)

    Article  MathSciNet  Google Scholar 

  36. Kudryavtseva, I., Efremov, A., Panteleev A.: Optimization of helicopter motion control based on the aggregated interpolation model. AIP Conf. Proc. 2181, 020001 (2019)

    Google Scholar 

  37. Kudryavtseva, I., Efremov, A., Panteleev, A.: H-infinity approach to design optimal output control for the aggregated interpolation model of helicopter motion. IOP Conf. Ser. Mater. Sci. Eng. 927, 012059 (2020)

    Google Scholar 

  38. Lukin, V.N., Chernyshov, L.N.: On the modeling of the university education processes in the information technology. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Applied Mathematics and Computational Mechanics for Smart Applications. SIST, vol. 217, pp. 321–339. Springer, Singapore (2020)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita N. Favorskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Favorskaya, M.N., Nikitin, I.S., Severina, N.S. (2022). Advances in Computational Study of Dynamic Systems. In: Favorskaya, M.N., Nikitin, I.S., Severina, N.S. (eds) Advances in Theory and Practice of Computational Mechanics. Smart Innovation, Systems and Technologies, vol 274. Springer, Singapore. https://doi.org/10.1007/978-981-16-8926-0_1

Download citation

Publish with us

Policies and ethics