Skip to main content

Urban Soil Microbiome Functions and Their Linkages with Ecosystem Services

  • Chapter
  • First Online:
Soils in Urban Ecosystem

Abstract

Urban soil microbiomes are key ecological components that provide relevant beneficial ecosystem services (ESs) to humans living in a city and its periphery. In this chapter, we highlight how microbes contribute to ESs in urban areas. We focus on three main pressures in urban cities including climate change, pollution, and loss of biodiversity, which affect urban live ability and sustainability. We discuss the link between microbial functional guilds in the urban soil microbiome with functions that translate into supporting ESs at various scales. The urban pressures addressed here range from a microscopic scale (bioremediation) to a local scale (supporting plant growth and soil health), all the way up to a regional scale (climate regulation). We conclude by addressing some of the secondary benefits of incorporating healthier urban soil, vegetation, and associated microbiomes into city planning, resulting in a more desirable, sustainable, and liveable city.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201–202:178–184

    Article  CAS  PubMed  Google Scholar 

  • Aichner B, Glaser B, Zech W (2007) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from Kathmandu, Nepal. Org Geochem 38(4):700–715

    Article  CAS  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105(suppl 1):11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson E, McPhearson T, Kremer P, Gomez-Baggethun E, Haase D, Tuvendal M et al (2015) Scale and context dependence of ecosystem service providing units. Ecosyst Serv 12:157–164

    Article  Google Scholar 

  • Archana HS, Jaitly AK (2014) Bioremediation: environmental biotechnology for heavy metal decontamination of soil and water. Biochem Cell Arch 14:259–281

    Google Scholar 

  • Bandla A, Saxena G, Mishra R, Swarup S (2019) A framework to address the food, energy and water nexus among indian megacities and their rapidly expanding peripheries. Dialog Sci Scientists Soc 2:1

    Article  Google Scholar 

  • Bandla A, Pavagadhi S, Sridhar Sudarshan A, Poh MCH, Swarup S (2020) 910 Metagenome-assembled genomes from the phytobiomes of three urban-farmed leafy Asian greens. Sci Data 7(1):278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2(8):805–814

    Article  CAS  PubMed  Google Scholar 

  • Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Global Biogeochem Cycles 19:1

    Article  CAS  Google Scholar 

  • Baruch Z, Liddicoat C, Cando-Dumancela C, Laws M, Morelli H, Weinstein P et al (2021) Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environ Res 196:110425

    Article  CAS  PubMed  Google Scholar 

  • Basta NT, Busalacchi DM, Hundal LS, Kumar K, Dick RP, Lanno RP et al (2016) Restoring ecosystem function in degraded urban soil using biosolids, biosolids blend, and compost. J Environ Qual 45(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T et al (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradl HB (2005) Chapter 1 Sources and origins of heavy metals. In: Bradl HB (ed) Interface science and technology, 6th edn. Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  • Briceño G, Palma G, Durán N (2007) Influence of organic amendment on the biodegradation and movement of pesticides. Crit Rev Environ Sci Technol 37(3):233–271

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Themaat EVLV, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64(1):807–838

    Article  CAS  PubMed  Google Scholar 

  • Bunce JT, Ndam E, Ofiteru ID, Moore A, Graham DW (2018) A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front Environ Sci 6:8

    Article  Google Scholar 

  • Carter JG, Cavan G, Connelly A, Guy S, Handley J, Kazmierczak A (2015) Climate change and the city: building capacity for urban adaptation. Prog Plann 95:1–66

    Article  Google Scholar 

  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M et al (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17(9):569–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4(3):331–338

    Article  CAS  Google Scholar 

  • Charlop-Powers Z, Pregitzer CC, Lemetre C, Ternei MA, Maniko J, Hover BM et al (2016) Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proc Natl Acad Sci 113(51):14811–14816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, de Vries S, Assmuth T, Dick J, Hermans T, Hertel O et al (2019) Research challenges for cultural ecosystem services and public health in (peri-)urban environments. Sci Total Environ 651:2118–2129

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Li M, Zhao C, Li K, Peng M, Qin A et al (2014) Overview of trace metals in the urban soil of 31 metropolises in China. J Geochem Explor 139:31–52

    Article  CAS  Google Scholar 

  • Cheng FY, Van Meter KJ, Byrnes DK, Basu NB (2020) Maximizing US nitrate removal through wetland protection and restoration. Nature 588(7839):625–630

    Article  CAS  PubMed  Google Scholar 

  • Ciancio A, Pieterse CMJ, Mercado-Blanco J (2019) Editorial: harnessing useful rhizosphere microorganisms for pathogen and pest biocontrol - second edition. Front Microbiol 10:1935

    Article  PubMed  PubMed Central  Google Scholar 

  • Corwin Doesken KG, Davis J (eds) (2007) Determining plant available nitrogen from manure and compost topdressed on an irrigated pasture. In: International symposium on air quality and waste management for agriculture, Broomfield, 16–19 Sept 2007. ASABE, St. Joseph

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Article  CAS  Google Scholar 

  • DeAngelis KM, Pold G, TopçuoÄŸlu BD, van Diepen LTA, Varney RM, Blanchard JL et al (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Eldridge DJ, Liu Y-R, Sokoya B, Wang J-T, Hu H-W et al (2021) Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci Adv 7(28):eabg5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Chen B, Zhu L (2013) Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution. Chin Sci Bull 58(6):613–621

    Article  CAS  Google Scholar 

  • Ding S, Hu H, Gu JD (2015) Fungi colonizing wood sticks of Chinese fir incubated in subtropical urban soil growing with Ficus microcarpa trees. Int J Environ Sci Technol 12(12):3781–3790

    Article  CAS  Google Scholar 

  • Eckart K, McPhee Z, Bolisetti T (2017) Performance and implementation of low impact development – a review. Sci Total Environ 607–608:413–432

    Article  CAS  PubMed  Google Scholar 

  • Erturk Y, Ercisli S, Haznedar A, Cakmakci R (2010) Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res 43(1):91–98

    Article  PubMed  Google Scholar 

  • Farley M (2012) Eutrophication in fresh waters: an international review. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer, Dordrecht, pp 258–270

    Google Scholar 

  • Fazi S, Bandla A, Pizzetti I, Swarup S (2016) Microbial biofilms as one of the key elements in modulating ecohydrological processes in both natural and urban water corridors. Ecohydrol Hydrobiol 16(1):33–38

    Article  Google Scholar 

  • Fulthorpe R, MacIvor JS, Jia P, Yasui S-LE (2018) The Green Roof microbiome: improving plant survival for ecosystem service delivery. Front Ecol Evol 6:5

    Article  Google Scholar 

  • García-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32(13):1907–1913

    Article  Google Scholar 

  • Gill AS, Lee A, McGuire KL, Stams AJM (2017) Phylogenetic and functional diversity of total (DNA) and expressed (RNA) bacterial communities in urban green infrastructure bioswale soils. Appl Environ Microbiol 83(16):e00287–e00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Xu X, Gong Z, Li X, Jia C, Guo M et al (2015) Remediation of PAH-contaminated soil at a gas manufacturing plant by a combined two-phase partition system washing and microbial degradation process. Environ Sci Pollut Res 22(16):12001–12010

    Article  CAS  Google Scholar 

  • Gonzalez F, Tkaczuk C, Dinu MM, Fiedler Å», Vidal S, Zchori-Fein E et al (2004) New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J Pestic Sci 2016(89):295–311

    Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94(12):2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graefe S, Buerkert A, Schlecht E (2019) Trends and gaps in scholarly literature on urban and peri-urban agriculture. Nutr Cycl Agroecosyst 115(2):143–158

    Article  Google Scholar 

  • Grenni P, Gibello A, Barra Caracciolo A, Fajardo C, Nande M, Vargas R et al (2009) A new fluorescent oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus wratislaviensis in contaminated groundwater and soil samples. Water Res 43(12):2999–3008

    Article  CAS  PubMed  Google Scholar 

  • de Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41(3):393–408

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  PubMed  Google Scholar 

  • Hein L, van Koppen K, de Groot RS, van Ierland EC (2006) Spatial scales, stakeholders and the valuation of ecosystem services. Ecol Econ 57(2):209–228

    Article  Google Scholar 

  • Hossain MF (2019) Chapter Five - infrastructure and transportation. In: Hossain MF (ed) Sustainable design and build. Butterworth-Heinemann, Oxford, pp 231–300

    Chapter  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis. Agenda 6(07):333

    Google Scholar 

  • Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Karlson U (2007) Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation. Appl Microbiol Biotechnol 76(3):533–543

    Article  CAS  PubMed  Google Scholar 

  • Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8(5):468–479

    Article  PubMed  Google Scholar 

  • Kumar L, Bharadvaja N (2020) Microbial remediation of heavy metals. In: Microbial bioremediation & biodegradation. Springer, Singapore, pp 49–72

    Chapter  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  PubMed  Google Scholar 

  • Lam O, Wheeler J, Tang CM (2014) Thermal control of virulence factors in bacteria: a hot topic. Virulence 5(8):852–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45(1):175–201

    Article  CAS  PubMed  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37(1):25–50

    Article  Google Scholar 

  • Li G, Sun G-X, Ren Y, Luo X-S, Zhu Y-G (2018) Urban soil and human health: a review. Eur J Soil Sci 69(1):196–215

    Article  Google Scholar 

  • Lin BB, Philpott SM, Jha S (2015) The future of urban agriculture and biodiversity-ecosystem services: challenges and next steps. Basic Appl Ecol 16(3):189–201

    Article  Google Scholar 

  • Logan AC (2015) Dysbiotic drift: mental health, environmental grey space, and microbiota. J Physiol Anthropol 34(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz K, Lal R (2009) Biogeochemical C and N cycles in urban soils. Environ Int 35(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Mallick S, Chakraborty J, Dutta TK (2011) Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 37(1):64–90

    Article  CAS  PubMed  Google Scholar 

  • Martin AM (2007) Composting of seafood wastes. In: Shahidi F (ed) Maximising the value of marine by-products. Woodhead Publishing, pp 486–515

    Chapter  Google Scholar 

  • McDougall R, Kristiansen P, Rader R (2019) Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc Natl Acad Sci 116(1):129–134

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Naidu R (2017) Soil and brownfield bioremediation. J Microbial Biotechnol 10(5):1244–1249

    Article  CAS  Google Scholar 

  • Mills JG, Bissett A, Gellie NJC, Lowe AJ, Selway CA, Thomas T et al (2020) Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor Ecol 28(S4):S322–SS34

    Article  Google Scholar 

  • Mire CE, Tourjee JA, O’Brien WF, Ramanujachary KV, Hecht GB (2004) Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. Appl Environ Microbiol 70(2):855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller A, Österlund H, Marsalek J, Viklander M (2020) The pollution conveyed by urban runoff: a review of sources. Sci Total Environ 709:136125

    Article  CAS  PubMed  Google Scholar 

  • Naylor D, Sadler N, Bhattacharjee A, Graham EB, Anderton CR, McClure R et al (2020) Soil microbiomes under climate change and implications for carbon cycling. Annu Rev Env Resour 45(1):29–59

    Article  Google Scholar 

  • Needleman B (2013) What are soils? Nat Educ Knowl 4(3):2

    Google Scholar 

  • Neuman M, Smith S (2010) City planning and infrastructure: once and future partners. J Plann Hist 9(1):21–42

    Article  Google Scholar 

  • Nielsen TK, Hylling O, Ellegaard-Jensen L, Aamand J, Hansen LH (2018) The Genome of BAM-degrading Aminobacter sp. MSH1 with Several Low Copy Plasmids. bioRxiv 307967

    Google Scholar 

  • Nivya RM (2015) A study on plant growth promoting activity of the endophytic bacteria isolated from the root nodules of Mimosa pudica plant. Int J Innov Res Sci Eng Technol 4(8):6959–6968

    Article  Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC, Ibarra M (2002) Brooklyn’s urban forest. USDA Forest Service

    Book  Google Scholar 

  • O’Riordan R, Davies J, Stevens C, Quinton JN, Boyko C (2021) The ecosystem services of urban soils: a review. Geoderma 395:115076

    Article  CAS  Google Scholar 

  • Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S (2016) Greenhouse gas emissions from soils—a review. Geochemistry 76(3):327–352

    Article  CAS  Google Scholar 

  • Oláh AB (2012) The possibilties of decreasing the urban heat island. Appl Ecol Envrion Res 10:173–183

    Article  Google Scholar 

  • Park H, Andrews C (2004) City planning and energy use. In: Cleveland CJ (ed) Encyclopedia of energy. Elsevier, New York, pp 317–330

    Chapter  Google Scholar 

  • Pascual JA, Garcia C, Hernandez T, Moreno JL, Ros M (2000) Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol Biochem 32(13):1877–1883

    Article  CAS  Google Scholar 

  • Pereira P, Bogunovic I, Muñoz-Rojas M, Brevik EC (2018) Soil ecosystem services, sustainability, valuation and management. Curr Opin Environ Sci Health 5:7–13

    Article  Google Scholar 

  • Pierre S, Groffman PM, Killilea ME, Oldfield EE (2016) Soil microbial nitrogen cycling and nitrous oxide emissions from urban afforestation in the New York City Afforestation Project. Urban For Urban Green 15:149–154

    Article  Google Scholar 

  • Pold G, Billings AF, Blanchard JL, Burkhardt DB, Frey SD, Melillo JM et al (2016) Long-term warming alters carbohydrate degradation potential in temperate forest soils. Appl Environ Microbiol 82(22):6518–6530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pompeii WC, Hawkins T (2011) Assessing the impact of green roofs on urban heat Island mitigation: a hardware scale modeling approach. Geogr Bull 52(1):52–61

    Google Scholar 

  • Premnath N, Mohanrasu K, Guru Raj Rao R, Dinesh GH, Prakash GS, Ananthi V et al (2021) A crucial review on polycyclic aromatic hydrocarbons - environmental occurrence and strategies for microbial degradation. Chemosphere 280:130608

    Article  CAS  PubMed  Google Scholar 

  • Pretty J, Barton J, Colbeck I, Bragg R, Mourato S, Mackerron G et al (2011) Health values from ecosystems. UNEP-WCMC, Cambridge

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, La Rocca N (2008) Biological nitrogen fixation. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology. Academic Press, Oxford, pp 412–419

    Chapter  Google Scholar 

  • Rifaat H, Mahrous K, Khalil W (2009) Effect of heavy metals upon metallothioneins in some streptomyces species isolated from Egyptian soil. J Appl Sci Environ Sanit 4:197

    Google Scholar 

  • Robinson JM, Mills JG, Breed MF (2018) Walking ecosystems in microbiome-inspired green infrastructure: an ecological perspective on enhancing personal and planetary health. Challenges 9(2):40

    Article  Google Scholar 

  • Rosier CL, Polson SW, D’Amico V, Kan J, Trammell TLE (2021) Urbanization pressures alter tree rhizosphere microbiomes. Sci Rep 11(1):9447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccá ML, Barra Caracciolo A, Di Lenola M, Grenni P (2017) Ecosystem services provided by soil microorganisms. In: Sustainability in plant and crop protection. Springer, Cham, pp 9–24

    Google Scholar 

  • Saleem M, Asghar HN, Ahmad W, Akram MA, Saleem MU, Khan MY et al (2017) Prospects of bacterial-assisted remediation of metal-contaminated soils. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability, vol. 2: Managing environmental pollution. Springer, Cham, pp 41–58

    Chapter  Google Scholar 

  • Salomon MJ, Watts-Williams SJ, McLaughlin MJ, Cavagnaro TR (2020) Urban soil health: a city-wide survey of chemical and biological properties of urban agriculture soils. J Clean Prod 275:122900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharenbroch BC, Bialecki MB, Fahey RT (2017) Distribution and factors controlling soil organic carbon in the Chicago Region, Illinois, USA. Soil Sci Soc Am J 81(6):1436–1449

    Article  CAS  Google Scholar 

  • Schifman LA, Prues A, Gilkey K, Shuster WD (2018) Realizing the opportunities of black carbon in urban soils: implications for water quality management with green infrastructure. Sci Total Environ 644:1027–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarze FWMR, Jauss F, Spencer C, Hallam C, Schubert M (2012) Evaluation of an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biol Control 61(2):160–168

    Article  Google Scholar 

  • Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27(1):99–127

    Article  CAS  PubMed  Google Scholar 

  • Shade A, Peter H, Allison S, Baho D, Berga M, Buergmann H et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharaff MM, Subrahmanyam G, Kumar A, Yadav AN. Chapter 5 - Mechanistic understanding of the root microbiome interaction for sustainable agriculture in polluted soils. In: Rastegari AA, Yadav AN, Yadav N, editors. New and future developments in microbial biotechnology and bioengineering Elsevier Amsterdam; 2020. p. 61-84.

    Chapter  Google Scholar 

  • Shochat E, Lerman SB, Anderies JM, Warren PS, Faeth SH, Nilon CH (2010) Invasion, competition, and biodiversity loss in urban ecosystems. BioScience 60(3):199–208

    Article  Google Scholar 

  • Sikosana ML, Sikhwivhilu K, Moutloali R, Madyira DM (2019) Municipal wastewater treatment technologies: a review. Proc Manuf 35:1018–1024

    Google Scholar 

  • Silva IS, Grossman M, Durrant LR (2009) Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. Int Biodeter Biodegr 63(2):224–229

    Article  CAS  Google Scholar 

  • Singh JS, Seneviratne G (2017) Agro-environmental sustainability. Springer

    Book  Google Scholar 

  • Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900

    Article  Google Scholar 

  • Turner DA, Pichtel J, Rodenas Y, McKillip J, Goodpaster JV (2014) Microbial degradation of gasoline in soil: comparison by soil type. J Bioremed Biodegr 5:216

    Google Scholar 

  • United Nations (2021) Cities and pollution, from https://www.un.org/en/climatechange/climate-solutions/cities-pollution

  • Vasenev V, Varentsov M, Konstantinov P, Romzaykina O, Kanareykina I, Dvornikov Y et al (2021) Projecting urban heat island effect on the spatial-temporal variation of microbial respiration in urban soils of Moscow megalopolis. Sci Total Environ 786:147457

    Article  CAS  Google Scholar 

  • Verma R, Annapragada H, Katiyar N, Shrutika N, Das K, Murugesan S (2020) Chapter 4 - Rhizobium. In: Amaresan N, Senthil Kumar M, Annapurna K, Kumar K, Sankaranarayanan A (eds) Beneficial microbes in agro-ecology. Academic Press, Boston, pp 37–54

    Chapter  Google Scholar 

  • Walsh F, Duffy B (2013) The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria. PLoS One 8(6):e65567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu J, Zhu H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front Plant Sci 9:313

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue K, Xie J, Zhou A, Liu F, Li D, Wu L et al (2016) Warming alters expressions of microbial functional genes important to ecosystem functioning. Front Microbiol 7:668

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhang N, Xue M, Lu ST, Tao S (2011) Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials. Environ Pollut 159(2):591–595

    Article  CAS  PubMed  Google Scholar 

  • Zang T, Wu H, Yan B, Zhang Y, Wei C (2021) Enhancement of PAHs biodegradation in biosurfactant/phenol system by increasing the bioavailability of PAHs. Chemosphere 266:128941

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X et al (2012) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change 2(2):106–110

    Article  CAS  Google Scholar 

  • Zhu YG, Gillings M, Simonet P, Stekel D, Banwart S, Penuelas J (2017) Microbial mass movements. Science 357(6356):1099–1100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Swarup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ooi, Q.E., Nguyen, C.T.T., Laloo, A., Bandla, A., Swarup, S. (2022). Urban Soil Microbiome Functions and Their Linkages with Ecosystem Services. In: Rakshit, A., Ghosh, S., Vasenev, V., Pathak, H., Rajput, V.D. (eds) Soils in Urban Ecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-16-8914-7_4

Download citation

Publish with us

Policies and ethics