Skip to main content

Doping Effect on Bandgap Energy and Luminescence Spectrum for AlN-Based Semiconductor

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on the Applications of Science and Mathematics 2021

Abstract

This ongoing work reports the heavy doping effect on the Aluminum Nitride (AlN) semiconductor (SC) material, illustrated via its energy-band structure (EBS). The research correlates the bandgap energy (BE) and depletion region (DR), which are then applied to the estimation of light-emitting diode (LED) luminescence spectrum (LS). The measurements are compared with different dopant concentrations (1 × 1018 cm−3 ‒1 × 1021 cm−3). Having the Gallium Arsenide (GaAs) properties as the controlled variable, the EBS is validated with literature findings. The measured band gap energy of AlN shifts from 6.2435 to 6.2326 eV. It decreased as the dopant concentration increased. However, the active spatial regions, reduced from (1.0250 × 10−1 to 4.5000 × 10−3 μm) × 1 μm2. The findings are compared with the output LS of LED using the same SC material. The changes in BE and DR are consistent with the LS peak intensity wavelength and relative intensity to all the chosen doping concentrations. Though acquiring this consistency, an extensive discussion with collaboration in material science studies will further strengthen the understanding regarding these behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Shealy et al., in Gallium Nitride (GaN) HEMT’s: Progress and Potential for Commercial Applications. IEEE, vol. 24th Annua (2002) pp. 243–246

    Google Scholar 

  2. S.P. Denbaars et al., Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater. 61(3), 945–951 (2013)

    Article  Google Scholar 

  3. A.S.A. Fletcher, D. Nirmal, A survey of Gallium Nitride HEMT for RF and high power applications. Superlattices Microstruct. 109, 519–537 (2017)

    Article  Google Scholar 

  4. W. Metaferia, K.L. Schulte, J. Simon, S. Johnston, A.J. Ptak, Gallium arsenide solar cells grown at rates exceeding 300 µm h−1 by hydride vapor phase epitaxy. Nat. Commun. 10(1), 1–8 (2019)

    Article  Google Scholar 

  5. A.R. Gobat, M.F. Lamorte, G.W. Mciver, Characteristics of high-conversion-efficiency gallium-arsenide solar cells. IRE Trans. Mil. Electron. MIL 6(1), 20–27 (1962)

    Google Scholar 

  6. K.R.L.B.S.V.G.P.L.V. Robert, R. Seal II, J. Gambogi, Gallium. United States Geol. Surv. Bull. 1802-H, H1–H35 (2017)

    Google Scholar 

  7. D. Vasileska, S.M. Goodnick, G. Klimeck, Computational electronics: semiclassical and quantum device modeling and simulation (2017)

    Google Scholar 

  8. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, 2005)

    Google Scholar 

  9. I. Pisarenko, E. Ryndin, Drift-diffusion simulation of high-speed optoelectronic devices. Electronics 8(1) (2019)

    Google Scholar 

  10. A. Shaari, A.F. Ahmad Noorden, S.N. Mohamad, S. Daud, Geometrical analysis of light-emitting diode for enhancing extraction efficiency. J. Sustain. Sci. Manag. 15(6), 68–84 (2020)

    Google Scholar 

  11. E.F. Schubert, Light-Emitting Diodes (2nd edn., Cambridge University Press, 2018)

    Google Scholar 

  12. Y. Wu, D.-B. Zhang, Z. Zhao, J. Pei, B.-P. Zhang, Enhanced thermoelectric properties of ZnO: C doping and band gap tuning. J. Eur. Ceram. Soc. (2020)

    Google Scholar 

  13. K.P. Misra, S. Jain, A. Agarwala, N. Halder, S. Chattopadhyay, Effective mass model supported band gap variation in cobalt-doped ZnO nanoparticles obtained by co-precipitation. Semiconductors 54(3), 311–316 (2020)

    Article  Google Scholar 

  14. X. Zhang et al., Enhanced performances of PVK/ZnO nanorods/graphene heterostructure UV photodetector via piezo-phototronic interface engineering. Adv. Mater. Interfaces 6(23), 1–8 (2019)

    Google Scholar 

  15. V.P. Sirkeli, O. Yilmazoglu, F. Küppers, H.L. Hartnagel, Effect of p-NiO and n-ZnSe interlayers on the efficiency of p-GaN/n-ZnO light-emitting diode structures. Semicond. Sci. Technol. 30(6), 065005 (2015)

    Google Scholar 

  16. R.A. Makin, K. York, S.M. Durbin, R.J. Reeves, Revisiting semiconductor band gaps through structural motifs: An Ising model perspective. Phys. Rev. B 102(11), 115202 (2020)

    Google Scholar 

  17. A. Shaari, F.A. Ahmad Fajri, A.F. Ahmad Noorden, M.Z. Abdul Kadir, S. Daud, Optimizing the efficiency of gallium nitride-based light-emitting diodes from contact area of current spreading to electrode. Microw. Opt. Technol. Lett., 1–5 (2020)

    Google Scholar 

  18. S. Sujecki, Photonics Modelling and Design (2014)

    Google Scholar 

  19. V. Bougrov, M.E. Levinshtein, S.L. Rumyantsev, A. Zubrilov, Properties of Advanced Semiconductor Materials GaN,AlN,InN,BN,SiC,SiGe (Wiley, New York, 2001), p. 207

    Google Scholar 

  20. J. Piprek, Semiconductor Optoelectronic Devices (Elsevier, 2013)

    Google Scholar 

  21. A. Dittmer, R. Izsák, F. Neese, D. Maganas, Accurate band gap predictions of semiconductors in the framework of the similarity transformed equation of motion coupled cluster theory. Inorg. Chem. 58(14), 9303–9315 (2019)

    Article  Google Scholar 

  22. M.F.N. Mohsen, Modification of Welge’s method of shock front location in the Buckley-Leverett problem for nonzero initial condition. Soc. Pet. Eng. J. 25(4), 521–523 (1985)

    Article  Google Scholar 

  23. H.J. Welge, A simplified method for computing oil recovery by gas or water drive introduction and theoretical background. Pet. Trans. AIME 195(13), 91–98 (1951)

    Google Scholar 

  24. Y. Peng et al., Tunable electronic structures of p -type Mg doping in AlN nanosheet. Appl. Phys. Lett. 116(044306), 0–4 (2014)

    Google Scholar 

  25. C.A. Klein, Bandgap dependence and related features of radiation ionization energies in semiconductors bandgap dependence and related features of radiation ionization energies. J. Appl. Phys. 39(4), 2029–2038 (2003)

    Article  Google Scholar 

  26. J.Y. Tsao et al., Solid-state lighting: an integrated human factors, technology, and economic perspective. Proc. IEEE 98(7), 1162–1179 (2010)

    Google Scholar 

  27. J.S. Harris et al., On compensation in Si-doped AlN on compensation in Si-doped AlN. Appl. Phys. Lett. 112(152101), 15–20 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by CAPTOR, Kulliyyah of Science, International Islamic University Malaysia, and the Ministry of Education (Malaysia) through the Fundamental Research Grant Scheme (Project No.: FRGS 19-033-0641) (References No.: FRGS/1/2018/TK07/UIAM/02/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Fakhrurrazi Ahmad Noorden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad Fajri, F.A., Hairol Aman, M.A., Ahmad Noorden, A.F., Abdul Hamid, A.N., Abdul Aziz, A. (2022). Doping Effect on Bandgap Energy and Luminescence Spectrum for AlN-Based Semiconductor. In: Mustapha, A.B., Shamsuddin, S., Zuhaib Haider Rizvi, S., Asman, S.B., Jamaian, S.S. (eds) Proceedings of the 7th International Conference on the Applications of Science and Mathematics 2021. Springer Proceedings in Physics, vol 273. Springer, Singapore. https://doi.org/10.1007/978-981-16-8903-1_5

Download citation

Publish with us

Policies and ethics