Skip to main content

Machine Learning and Life Sciences

  • Chapter
  • First Online:
Machine Learning in Biological Sciences

Abstract

Machine learning has tremendous applications in diverse domains of Life Sciences, including Health Sciences, basic biology research, clinical research, advances in diagnostics and drug development, advances in radiology and radiotherapy, extraction of information from clinicians notes and Electronic Health Records (HER), animal sciences, welfare, health and industry, plant research, and agriculture industry. This is also expected to bring great advances in the global artificial intelligence based industry and the global market. We discuss in this chapter the major applications of Machine Learning in the major domains of life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agany DDM, Pietri JE, Gnimpieba EZ (2020) Assessment of vector-host-pathogen relationships using data mining and machine learning. Comput Struct Biotechnol J 18:1704–1721

    Article  PubMed  PubMed Central  Google Scholar 

  • Alakwaa FM, Chaudhary K, Garmire LX (2018) Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. J Proteome Res 17(1):337–347

    Article  CAS  PubMed  Google Scholar 

  • Arguello-Casteleiro M, Stevens R, Des-Diz J et al (2019) Exploring semantic deep learning for building reliable and reusable one health knowledge from PubMed systematic reviews and veterinary clinical notes. J Biomed Semant 10(1):22

    Article  Google Scholar 

  • Baggio D, Peel T, Peleg AY et al (2019) Closing the gap in surveillance and audit of invasive mold diseases for antifungal stewardship using machine learning. J Clin Med 8(9):1390

    Article  PubMed Central  Google Scholar 

  • Bhojwani D, Yang JJ, Pui CH (2015) Biology of childhood acute lymphoblastic leukemia. Pediatr Clin N Am 62(1):47–60

    Article  Google Scholar 

  • Bisaso KR, Anguzu GT, Karungi SA, Kiragga A, Castelnuovo B (2017) A survey of machine learning applications in HIV clinical research and care. Comput Biol Med 91:366–371

    Article  PubMed  Google Scholar 

  • Esposito S, Carputo D, Cardi T, Tripodi P (2019) Applications and trends of machine learning in genomics and phenomics for next-generation breeding. Plan Theory 9(1):34

    Google Scholar 

  • Eyerich K, Brown SJ, Perez White BE, Tanaka RJ, Bissonette R, Dhar S, Bieber T, Hijnen DJ, Guttman-Yassky E, Irvine A, Thyssen JP, Vestergaard C, Werfel T, Wollenberg A, Paller AS, Reynolds NJ (2019) Human and computational models of atopic dermatitis: a review and perspectives by an expert panel of the International Eczema Council. J Allergy Clin Immunol 143(1):36–45

    Article  PubMed  Google Scholar 

  • Ghosh S (2017) Immunology and immunotechnology. Books and Allied Pvt Limited, Kolkata

    Google Scholar 

  • Ghosh S (2019) Computational immunology, basics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ghosh S (2020) Computational immunology, applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ghosh S, Bandyopadhyay S, Mukherjee K, Mallick A, Pal S, Mandal C, Bhattacharya DK, Mandal C, Glycoconj J (2007) O-acetylation of sialic acids is required for the survival of lymphoblasts in childhood acute lymphoblastic leukemia (ALL). Glycoconj J 24(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Camargo CA, Faridi MK, Yun BJ, Hasegawa K (2018) Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. Am J Emerg Med 36(9):1650–1654

    Article  PubMed  Google Scholar 

  • Hewitt M, Weiner SL, Simone JV (2003) Childhood cancer survivorship: improving care and quality of life. National Academies Press, Washington, DC

    Google Scholar 

  • Hu Y, Lu Y, Wang S, Zhang M, Qu X, Niu B (2019) Application of machine learning approaches for the design and study of anticancer drugs. Curr Drug Targets 20(5):488–500

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 15(1):41–51

    CAS  PubMed  Google Scholar 

  • Isaevska E, Manasievska M, Alessi D et al (2017) Cancer incidence rates and trends among children and adolescents in Piedmont, 1967-2011. PLoS One 12(7):e0181805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorge A, Castro VM, Barnado A et al (2019) Identifying lupus patients in electronic health records: development and validation of machine learning algorithms and application of rule-based algorithms. Semin Arthritis Rheum 49(1):84–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36(4):277–285

    Article  PubMed  Google Scholar 

  • Krempel R, Kulkarni P, Yim A, Lang U, Habermann B, Frommolt P (2018) Integrative analysis and machine learning on cancer genomics data using the cancer systems biology database (CancerSysDB). BMC Bioinf 19(1):156

    Article  CAS  Google Scholar 

  • Li Z, Reza Soroushmehr SM, Hua Y, Mao M, Qiu Y, Najarian K (2017) Classifying osteosarcoma patients using machine learning approaches. Conf Proc IEEE Eng Med Biol Soc 2017:82–85

    Google Scholar 

  • Li C, Zeng X, Yu H, Gu Y, Zhang W (2018) Identification of hub genes with diagnostic values in pancreatic cancer by bioinformatics analyses and supervised learning methods. World J Surg Oncol 16(1):223

    Article  PubMed  PubMed Central  Google Scholar 

  • Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine learning in agriculture: a review. Sensors 18(8):2674

    Article  PubMed Central  Google Scholar 

  • Lustgarten JL, Zehnder A, Shipman W, Gancher E, Webb TL (2020) Veterinary informatics: forging the future between veterinary medicine, human medicine, and One Health initiatives-a joint paper by the Association for Veterinary Informatics (AVI) and the CTSA One Health Alliance (COHA). JAMIA Open 3(2):306–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Macesic N, Polubriaginof F, Tatonetti NP (2017) Machine learning: novel bioinformatics approaches for combating antimicrobial resistance. Curr Opin Infect Dis 30(6):511–517

    Article  PubMed  Google Scholar 

  • Messinger AI, Bui N, Wagner BD, Szefler SJ, Vu T, Deterding RR (2019) Novel pediatric-automated respiratory score using physiologic data and machine learning in asthma. Pediatr Pulmonol 54(8):1149–1155

    Article  PubMed  PubMed Central  Google Scholar 

  • Moosavi A, Motevalizadeh AA (2016) Role of epigenetics in biology and human diseases. Iran Biomed J 20(5):246–258

    PubMed  PubMed Central  Google Scholar 

  • Nayeri S, Sargolzaei M, Tulpan D (2019) A review of traditional and machine learning methods applied to animal breeding. Anim Health Res Rev 20(1):31–46

    Article  PubMed  Google Scholar 

  • Orange DE, Agius P, DiCarlo EF et al (2018) Identification of three rheumatoid arthritis disease subtypes by machine learning integration of synovial histologic features and RNA sequencing data. Arthritis Rheumatol 70(5):690–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen JA, Punt J, Stranford SA, Jones PP, Kuby J (2013) Kuby immunology. W.H. Freeman, New York

    Google Scholar 

  • Pal S, Ghosh S, Bandyopadhyay S, Mandal C, Bandhyopadhyay S, Kumar Bhattacharya D, Mandal C (2004) Differential expression of 9-O-acetylated sialoglycoconjugates on leukemic blasts: a potential tool for long-term monitoring of children with acute lymphoblastic leukemia. Int J Cancer 111(2):270

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Awan KH, Arakeri G et al (2019) Machine learning and its potential applications to the genomic study of head and neck cancer—a systematic review. J Oral Pathol Med 48:773–779. https://doi.org/10.1111/jop.12854

    Article  PubMed  Google Scholar 

  • Peiffer-Smadja N, Rawson TM, Ahmad R et al (2020) Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect 26(5):584–595

    Article  CAS  PubMed  Google Scholar 

  • Prosperi M et al (2014) Predicting phenotypes of asthma and eczema with machine learning. BMC Med Genet 7(Suppl 1):S7

    Google Scholar 

  • Saglani S, Custovic A (2019) Childhood asthma: advances using machine learning and mechanistic studies. Am J Respir Crit Care Med 199(4):414–422

    Article  CAS  PubMed  Google Scholar 

  • Spathis D, Vlamos P (2019) Diagnosing asthma and chronic obstructive pulmonary disease with machine learning. Health Informatics J 25(3):811–827

    Article  PubMed  Google Scholar 

  • Stafford IS, Kellermann M, Mossotto E, Beattie RM, MacArthur BD, Ennis S (2020) A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ Digit Med 3:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Zhang W, Zhu M et al (2018) Lupus nephritis pathology prediction with clinical indices. Sci Rep 8(1):10231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ullah R, Khan S, Ali H, Chaudhary II, Bilal M, Ahmad I (2019) A comparative study of machine learning classifiers for risk prediction of asthma disease. Photodiagn Photodyn Ther 28:292–296

    Article  CAS  Google Scholar 

  • Vamathevan J, Clark D, Czodrowski P et al (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18(6):463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Izendoorn DG, Szuhai K, Briaire-de Bruijn IH, Kostine M, Kuijjer ML, Bovée JV (2019) Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput Biol 15(2):e1006826

    Article  CAS  Google Scholar 

  • Van Nieuwenhove E, Lagou V, Van Eyck L et al (2019) Machine learning identifies an immunological pattern associated with multiple juvenile idiopathic arthritis subtypes. Ann Rheum Dis 78(5):617–628. https://doi.org/10.1136/annrheumdis-2018-214354

    Article  CAS  PubMed  Google Scholar 

  • Zewdie GK, Liu X, Wu D, Lary DJ, Levetin E (2019) Applying machine learning to forecast daily Ambrosia pollen using environmental and NEXRAD parameters. Environ Monit Assess 191(Suppl 2):261

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Dasgupta, R. (2022). Machine Learning and Life Sciences. In: Machine Learning in Biological Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-16-8881-2_11

Download citation

Publish with us

Policies and ethics