Skip to main content

Meta-Analysis of fMRI for Emotional and Cognitive States Shows Hierarchical Invariant Optimization in Brain

  • Conference paper
  • First Online:
Proceedings of Trends in Electronics and Health Informatics

Abstract

The brain’s cognitive operation for emotion and perception is captured by fMRI images, which activates or deactivates different functional regions in synchronization with the human thoughts and expressions of emotional states. These synchronized pairs of emotional states and images of activated brain regions of interest (ROI) are called functional images. These images are not useful until we couple the brain’s anatomical map or brain atlases with the ROI images. The coupling of two maps is called normalization, here we used both MNI and Talairach standards. Then, we investigated five ROI domains of behavioral response shifts, e.g., Action, Cognition, Emotion, Interoception, and Perception to find spatial jumps, periodic jumps between spaces, or multiple ROIs to find invariant geometric shapes. Each brain function has a specific set of geometric shapes that remain invariant in a 3D orientation, invariants are subject independent, correlate brain behavior and functions with comparative geometric shapes. Our finding paves the way to integrate spatio-temporal dynamics of hierarchically connected behavioral responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  2. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  Google Scholar 

  3. Markov NT et al (2014) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259

    Article  Google Scholar 

  4. Hagmann P et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  Google Scholar 

  5. Friston KJ, Stephan KE (2007) Free-energy and the brain. Synthese 159(3):417–458. https://doi.org/10.1007/s11229-007-9237-y

    Article  Google Scholar 

  6. Friston K, Kilner J, Harrison L (2006) A free energy principle for the brain. J Physiol Paris 100(1–3):70–87. https://doi.org/10.1016/j.jphysparis.2006.10.001 Epub 2006 Nov 13 PMID: 17097864

    Article  Google Scholar 

  7. Deco G, Vidaurre D, Kringelbach ML (2021) Revisiting the global workspace orchestrating the hierarchical organization of the human brain. Nat Hum Behav 5:497–511. https://doi.org/10.1038/s41562-020-01003-6)

    Article  Google Scholar 

  8. Pouratian N, Sheth SA, Martin NA, Toga AW (2003) Shedding light on brain mapping: advances in human optical imaging. Trends Neurosci 26(5):277–282. https://doi.org/10.1016/S0166-2236(03)00070-5 PMID: 12744845

    Article  Google Scholar 

  9. Eickhoff SB, Constable RT, Yeo BTT (2018) Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170:332–347. https://doi.org/10.1016/j.neuroimage.2017.02.018 Epub 2017 Feb 20. PMID: 28219775; PMCID: PMC5563483

    Article  Google Scholar 

  10. Glasser MF et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178

    Article  Google Scholar 

  11. Singh P, Saxena K, Singhania A, Sahoo P, Ghosh S, Chhajed R, Ray K, Fujita D, Bandyopadhyay A (2020) A self-operating time crystal model of the human brain: can we replace entire brain hardware with a 3D fractal architecture of clocks alone? Information 11(5):238

    Article  Google Scholar 

  12. Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95(24):14529–14534

    Article  Google Scholar 

  13. Lobier M, Siebenhuhner F, Palva S, Palva JM (2014) Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage 85:853–872

    Article  Google Scholar 

  14. Hillebrand A et al (2016) Direction of information flow in large-scale resting-state networks is frequency-dependent. Proc Natl Acad Sci USA 113:3867–3872

    Article  Google Scholar 

  15. Huntenburg JM, Bazin PL, Margulies DS (2018) Large-scale gradients in human cortical organization. Trends Cogn Sci 22:21–31

    Article  Google Scholar 

  16. Lancaster JL, Laird AR, Eickhoff SB, Martinez MJ, Fox PM, Fox PT (2012) Automated regional behavioral analysis for human brain images. Front Neuroinform 6:23. https://doi.org/10.3389/fninf.2012.00023

    Article  Google Scholar 

  17. Agrawal L et al (2016) Inventing atomic resolution scanning dielectric microscopy to see a single protein complex operation live at resonance in a neuron without touching or adulterating the cell. J Integr Neurosci 15(04):435–462

    Article  Google Scholar 

  18. Ghosh S, Sahu S, Agrawal L, Shiga T, Bandyopadhyay A (2016) Inventing a co-axial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell. J Integr Neurosci 15:403–433

    Article  Google Scholar 

  19. Singh P et al (2021) Electrophysiology using coaxial atom probe array: live imaging reveals hidden circuits of a hippocampal neural network. J Neurophysiol 125(6):2107–2116

    Article  Google Scholar 

  20. Singh P, Sahoo P, Saxena K, Manna JS, Ray K, Ghosh S, Bandyopadhyay A et al (2021) Cytoskeletal filaments deep inside a neuron are not silent: they regulate the precise timing of nerve spikes using a pair of vortices. Symmetry 13:821. https://doi.org/10.3390/sym13050821

    Article  Google Scholar 

  21. Saxena K, Singh P, Sahoo P, Sahu S, Ghosh S, Ray K, Fujita D, Bandyopadhyay A (2020) Fractal, scale free electromagnetic resonance of a single brain extracted microtubule nanowire, a single tubulin protein and a single neuron. Fractal Fractional 4(2):11

    Article  Google Scholar 

  22. Singh P et al (2021c) Quaternion, octonion to dodecanion manifold: stereographic projections from infinity lead to a self-operating mathematical universe. In Singh P, Gupta RK, Ray K, Bandyopadhyay A (eds) Proceedings of International conference on trends in computational and cognitive engineering. Adv Intell Syst Comput, Springer, Singapore, vol 1169, pp 55–77

    Google Scholar 

  23. Singh P et al (2021d) A space-time-topology-prime, stTS metric for a self-operating mathematical universe uses dodecanion geometric algebra of 2–20 D complex vectors. In Ray K, Roy KC, Toshniwal SK, Sharma H, Bandyopadhyay A (eds) Proceedings of international conference on data science and applications. Lecture notes in networks and systems, Springer, Singapore, vol 148, pp 1–31

    Google Scholar 

Download references

Acknowledgements

We thank Dave Sonntag and Martin Timms for the independent test and verification of our device as part of patent US9019685B2. Authors acknowledge the Asian office of Aerospace R&D (AOARD), a part of the United States Air Force (USAF), for Grant no. FA2386-16-1-0003 (2016–2019) on the electromagnetic resonance-based communication and intelligence of biomaterials. Authors also acknowledge the financial assistance of Scheme for Promotion of Academic and Research Collaboration (SPARC) an MHRD, Govt of India initiative for the project titled 'Management of Fractal Time in High-level Decision Making' (Govt of India, MHRD; project number P 524; Start date: 15.03. 2019-14.03.2021; Duration:2 years).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pattanayak, A. et al. (2022). Meta-Analysis of fMRI for Emotional and Cognitive States Shows Hierarchical Invariant Optimization in Brain. In: Kaiser, M.S., Bandyopadhyay, A., Ray, K., Singh, R., Nagar, V. (eds) Proceedings of Trends in Electronics and Health Informatics. Lecture Notes in Networks and Systems, vol 376. Springer, Singapore. https://doi.org/10.1007/978-981-16-8826-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8826-3_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8825-6

  • Online ISBN: 978-981-16-8826-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics