Skip to main content

Prospects and Advances in the Management of Coconut Wood Borers

  • Chapter
  • First Online:
Science of Wood Degradation and its Protection
  • 754 Accesses

Abstract

Coconut is considered as the “Tree of Life” and is one of the most important crops for the Asia and Pacific region providing food, nutrition, and livelihood to millions of coconut farmers in the region. In the major coconut-producing countries, bulk of their coconut products are exported, and hence, coconut cultivation and industry play a pivotal role for the growth of their economies. Flooring items are in high demand in Asia, America, and Europe. The senile or overgrown coconut trees provide a good raw material basis for the manufacture of lumber and other products used for construction and furniture. With a vast demand for wood and a depleting forest resource, India relies heavily on imported wood to meet its different wood product needs. However, the development of viable coconut wood-based industries is mostly determined by the structure and composition of the raw material, processing technique, and the location and availability of over mature, diseased, and dead stems. Being evergreen with a unique morphology, the coconut palm provides shelter and food for a wide array of arthropod borer pests and their natural enemies. Insect pests like rhinoceros beetle, Oryctes rhinoceros Linn. and red palm weevil (Rhynchophorus ferrugineus Olivier) are the main biotic constraints hampering coconut production by causing 30% yield loss. The borer pests are reported to cause irreversible damage to frond, trunk, and stem in the coconut palm, while some species are associated with nuts and emerging inflorescence. Their nature and severity of the problems, however, vary with the height of the cultivars, location, weather, and cultural practices. The palm wood should be free of pest damage and suitable for building applications when it gets senile if integrated pest management measures against main pests in the standing crop are implemented in a timely manner. This chapter summarizes the current updates on pest dynamics and management tactics including monitoring, agrotechnical measures, biological control, semiochemical-based control, and chemical control. The implementation of integrated pest management strategies against major pests, based on the abovementioned tactics, is discussed in detail. In addition, training and educating the farmers are expected to play a central role in area-wide IPM of major coconut pests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Fattah, A. Y., Abd El-Wahab, A. S., Jamal, Z. A., & El-Helaly, A. A. (2021). Histopathological studies of red palm weevil Rhynchophorus ferrugineus, (Olivier) larvae and adults to evaluate certain nano pesticides. Brazilian Journal of Biology, 81(1), 195–201.

    Google Scholar 

  • Abraham, V. A., Al-Shuaibi, M., Faleiro, J. R., Aozuhairah, R. A., & Vidyasagar, P. S. P. V. (1998). An integrated approach for the management of red palm weevil, Rhynchophorus ferrugineus Olivier-A key pest of date palm in the Middle-East. Sultan Qaboos University Journal of Scientific Research Agriculture Science, 3, 77–83.

    Google Scholar 

  • Abraham, V. A., & Kurian, C. (1975). An integrated approach to the control of Rhynchophorus ferrugineus F. The red weevil of coconut palm. In: Proceedings of fourth session of the FAO technical workshop party on coconut production, protection and processing, September 14–25, Kingston, Jamaica, pp. 1–5.

    Google Scholar 

  • Ahmed, F. A., Hussein, K. T., & Gad, M. I. (2015). Biological activity of four plant oils, against the red palm weevil, Rhynchophorus ferrugineus (Oliver), (Coleoptera: Curculionidae). J Bioscience and Applied Research, 1(5), 213–222.

    Google Scholar 

  • Alfazariy, A. A. (2004). Notes on the survival capacity of two naturally occurring entomopathogens on the red palm weevil, Rhynchophorus ferrugineus (Olivier). Egypt J Biol Pest Control, 14, 423.

    Google Scholar 

  • Ali, M., Mohanny, K., Mohamed, G., & Allam, R. (2019). Efficacy of some promising plant essential oils to control the red palm weevil Rhynchophorus ferrugineus olivier (coleoptera: curculionidae) under laboratory conditions. SVU-International Journal of Agricultural Sciences, 1(2), 12–45.

    Google Scholar 

  • Anonymous. (2006). Termite and their control. Coconut research Institute, Lunuwila, Sri Lanka. Advisory circular No. B 6.

    Google Scholar 

  • Ansi, A. A., Aldryhim, Y., & Al Janobi, A. (2020). First use of radio telemetry to assess behavior of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) in the presence and absence of pheromone traps. Computers and Electronics in Agriculture, 170, 0168–1699.

    Google Scholar 

  • Antony, J., & Kurian, C. (1975). Physical and biotic factors which exert a check on the population density of Oryctes rhinoceros Linn. in India. In: Paper presented in at the fourth session of the FAO Technical Working Party on coconut production, protection and processing, Kingston, Jamaica, September, 14–25.

    Google Scholar 

  • Arancon, R. N., Jr. (2010). Global trends and new opportunities for the coconut industry. Planter, 86, 627–640.

    Google Scholar 

  • Arshy, I., Mao, Y., Al-Fehaid, Y., et al. (2020). Early detection of red palm weevil using distributed optical sensor. Scientific Reports, 10, 3155.

    Google Scholar 

  • Banu, J. G., Rajendran, G., & Subramanian, S. (2003). Susceptibility of red palm weevil, Rhynchophorus ferrugineus (Olivier) to entomopathogenic nematodes. Annals Plant Protection Science, 11, 104–106.

    Google Scholar 

  • Bedford, G. O. (1980). Biology, ecology and control of palm rhinoceros beetle. Annual Review of Entomology, 25, 309–339.

    Google Scholar 

  • Bedford, G. O. (2013). Biology and management of palm dynastid beetles-Recent advances. Annual Review of Entomology, 58, 353–372.

    CAS  PubMed  Google Scholar 

  • Beeson, C.F.C. (1940). A report on the economic importance and control of termites in India. 74.

    Google Scholar 

  • Beeson, C. F. C. (1941). The ecology and control of the forest insects of India and the neighboring countries. Goverment of India, 12, 767.

    Google Scholar 

  • Blumberg, D., Navon, A., Kehat, E., & Lavski, S. (2001). Date palm pests in Israel early second millennium. Alon Hanotea, 55, 42–48.

    Google Scholar 

  • Booth, R. G., Cox, M. L., & Madge, R. B. (1990). IIE guides to insects of importance to man: 3 Coleoptera (p. 367). CAB International.

    Google Scholar 

  • Burand, J. P. (1998). Nudiviruses. In L. K. Miller & L. A. Bal (Eds.), The insect viruses (pp. 69–90). Plenum.

    Google Scholar 

  • Burkill, I. H. (1917). Scolia erratica Smith, a parasite of the red coconut weevil, Rhynchophorus ferrugineus. Straits Settlements Garden Bull, 1, 399–400.

    Google Scholar 

  • CACP. (2021). Price policy for copra 2021 season. Commission for Agricultural Costs & Prices, 134.

    Google Scholar 

  • Chandrika, M., & Nair, C. P. R. (2000). Effect of Clerodendrum infortunatum on grubs of coconut Rhinoceros beetle, Oryctes rhinoceros L. In N. Muralidharan & R. Rajkumar (Eds.), Recent Advances in Plantation Crops Research (pp. 297–299).

    Google Scholar 

  • CPCRI. (1979). Nematodes, fungi, insect and mites associated with the coconut palm. Tech Bull No. 2 (p. 236). ICAR-CPCRI.

    Google Scholar 

  • CPCRI. (2016). Annual report 2015–2016 (p. 210). ICAR-Central Plantation Crops Research Institute.

    Google Scholar 

  • Danger, T. K., Geetha, L., Jayapal, S. P., & Pillai, G. B. (1991). Mass production of entomopathogen, Metarhizium anisopliae in coconut water wasted from copra making industry. Journal of Plantation Crops, 19(1), 54–69.

    Google Scholar 

  • DEEDI. (2010). Cocowood: properties and processing facts for coconut wood. Department of Employment, Economic Development and Innovation.

    Google Scholar 

  • Dehvari, M. A., Faghih, A. A., Ahadiyat, A., & Gharalari, A. H. (2019). Effects of some non-host plant components on oviposition behavior of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae). Journal of Entomological Society of Iran, 39(1), 17–31.

    Google Scholar 

  • Djokoto, A. A. (2013). Exploring coconut tree as an alternative wood carving material. BA (Hons). IRAI thesis (p. 103). Kwame Nkrumah University of Science and Technology.

    Google Scholar 

  • Faleiro, J. (2006). A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. International Journal of Tropical Insect Science, 26(3), 135–154.

    CAS  Google Scholar 

  • Faleiro, J. R., Abraham, V. A., & Al-Shuaibi, M. A. (1998). Role of pheromone trapping in the management of red palm weevil. Indian Cockroach Journal, 29(5), 1–3.

    Google Scholar 

  • FAO. (1985). Coconut wood. Processing and use. FAO Forestry Paper 57 (p. 58). FAO.

    Google Scholar 

  • Fathi, L. (2014). Structural and mechanical properties of wood from coconut palms, oil palms and date palms. Ph.D. thesis (p. 172). University of Hamburg.

    Google Scholar 

  • Fernando, H.E. (1962). Termites of economic importance in Ceylon. In: Proceeding: Termites in Humid Tropics, New Delhi Symposium, 1960, pp. 205-210. Retrieved from ftp://ftp.fao.org/docrep/fao/009/ah244e/ah.pdf.

  • Ghosh, C. C. (1911). Life history of Indian insects. III. The rhinoceros beetle (Oryctes rhinoceros) and the red or palm weevil (Rhynchophorus ferrugineus). Memoirs of the Department of Agriculture in India. Entomologica Series, 2(10), 193–215.

    Google Scholar 

  • Giblin-Davis, R. M. (2001). Borers of Palms. In F. W. Howard, D. Moore, & R. G. Abad (Eds.), Insects on palms (pp. 267–304). CABI publishing.

    Google Scholar 

  • Gitau, C. W., Gurr, G. M., Dewhurst, C. F., Fletcher, M. J., & Mitchell, A. (2009). Insect pests and insect-vectored diseases of palms. Australian Journal of Entomology, 48(4), 328–342.

    Google Scholar 

  • Gnanaharan, R., Sudheendrakumar, V. V., & Nair, K. S. S. (1985). Protection of cashew wood in storage against insect borers. Material und Organismen, 20(1), 65–74.

    Google Scholar 

  • Gopal, M., Gupta, A., & Thomas, G. V. (2006). Prospects of using Metarhizium anisopliae to check the breeding of insect pest Oryctes rhinoceros in coconut leaf vermicomposting sites. Bioresource Technology, 97, 1801–1806.

    CAS  PubMed  Google Scholar 

  • Gopal, M., Gupta, A., & Thomas, G. V. (2009). Importance of producing nucleus earthworm culture vermiculture for the dissemination and popularization of coconut leaf vermicomposting technology. Indian coconut Journal, 51(10), 8–12.

    Google Scholar 

  • Gopinadhan, P. B., Mohandas, N., & Nair, K. P. V. (1990). Cytoplasmic polyhedrosis virus infecting red palm weevil of coconut. Current Science, 59, 577–580.

    Google Scholar 

  • Gressitt, J. L. (1953). The coconut rhinoceros beetle. Bernice P. Bishop. Museum Bulletin, 212, 1–157.

    Google Scholar 

  • Gurmit, S. (1987). Naphthalene balls for the protection of coconut and oil palm against Oryctes rhinoceros Linn. Planter, 63(2), 286–292.

    Google Scholar 

  • Hallett, R. H., Gries, G., Borden, J. H., Czyzewska, E., Oehlschlager, A. C., Pierce, H. D., Jr., Angerilli, N. P. D., & Rauf, A. (1993). Aggregation pheromones of two Asian palm weevils, Rhynchophorus ferrugineus and R. vulneratus. Naturwissenschaften, 80, 328–333.

    CAS  Google Scholar 

  • Hallett, R. H., Perez, A. L., Gries, G., Gries, R., Pierce, H. D., Jr., Yu, E. J., Oehlschlager, A. C., Gonzalez, L. M., & Borden, J. H. (1995). Aggregation pheromone of coconut rhinoceros beetle, Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae). Journal Chemical Ecology, 21(10), 1549.

    CAS  Google Scholar 

  • Henry, G. M. (1917). The coconut red weevil, Rhynchophorus ferrugineus. Tropical Agriculture, 48, 218–219.

    Google Scholar 

  • Hopewell, E., Bailleres, G. H., & House, S. (2012). Improving value and marketability of coconut wood. Retrieved from http://aciar.gov.au/publication/fr20112-08.

  • Howard, F. W., Moore, D., Giblin-Davis, R. M., & Abad, R. G. (2001). Insect on palms (p. 400). CAB International.

    Google Scholar 

  • Huger, A. M. (1966). A virus disease of the Indian rhinoceros beetle, Oryctes rhinoceros Linn., caused by a new type of insect virus. Rhabdion virus oryctes. J Invertr Pathol, 8, 38–41.

    CAS  Google Scholar 

  • Husain, A. S., & Sundaramari, M. (2011). Scientific rationality and perceived effectiveness of indigenous technical knowledge on coconut (Cocos nucifera L.) cultivation in Kerala. Journal of Tropical Agriculture, 49(1–2), 78–87.

    Google Scholar 

  • Hussain, A., Rizwan-ul-haq, M., AlJabr, A. M., & Al-Ayedh, H. (2019). Lethality of Sesquiterpenes Reprogramming Red Palm Weevil detoxification mechanism for natural novel biopesticide development. Molecules, 24(9), 1648. https://doi.org/10.3390/molecules24091648

    Article  CAS  PubMed Central  Google Scholar 

  • Joseph Rajkumar, A., Chandrika Mohan, P. S., Rajkumar, N. T., & Nair, C. P. R. (2018). Pest dynamics and suppression strategies. In K. U. K. Nampoothiri, V. Krishnakumar, P. K. Thampan, & A. Nair (Eds.), The Coconut Palm (Cocos nucifera L.) - Research and Perspectives (pp. 557–635).

    Google Scholar 

  • Josephrajkumar, A., Mohan, C., Rajan, P., Thomas, R. J., Chandramohanan, R., & Jacob, P. M. (2012). Pest management in coconut nursery. Technical Bulletin No. 73, 12, 16.

    Google Scholar 

  • Josephrajkumar, A., Chandrika, M., & Krishnakumar, V. (2015). Management of rhinoceros beetle. Indian Coconut Journal, 58(7), 21–23.

    Google Scholar 

  • Josephrajkumar, A., Chandrika, M., Shanavas, M., Thomas, S., & Namboothiri, C. G. N. (2014a). Defending rhinoceros beetle attack on coconut through botanicals and ecological engineering. In R. Dinesh, S. J. Eapen, C. M. Senthil Kumar, R. Ramakrishnan Nair, S. Devasahayam, T. John Zachariah, & M. Anandaraj (Eds.), Abstracts PLACROSYM XXI (International symposium on plantation crops) (p. 129). ICAR-Indian Institute of Spices Research.

    Google Scholar 

  • Josephrajkumar, A., Thomas, S., Shanavas, M., & Mohan, C. (2014b). Managing the hidden villain in coconut garden. Kerala Karshakan e-Journal, 2(4), 21–27.

    Google Scholar 

  • Jourez, B., Verheyen, C., & Van Acker, J. (2012). Coconut lumber for wood decks (Cocos nucifera L.): Decay resistance against Basidiomycetes fungi. IRG/WP/12-10784, 2, 1–9.

    Google Scholar 

  • Kerala Agricultural University [KAU]. (2002). Package of practices recommendations: Crops (12th ed., p. 278). KAU.

    Google Scholar 

  • Killmann, W., & Fink, D. (1996). Coconut palm stem processing-Technical handbook (p. 206). Department of Furniture and Wooden Products.

    Google Scholar 

  • Krishnakumar, R., & Sudha, G. (2002). Indian tree pie Dendrocitta vagabunda parvula (Whistler and Kinnear) (Corvidae). A predatory bird of red palm weevil Rhynchophorus ferrugineus (Oliv.). Insect Environment, 8, 133.

    Google Scholar 

  • Krishnamoorthy, C., & Ramasubbiah, K. (1962). Termites affecting cultivated crops in Andhra Pradesh and their control: Retrospect and prospect. In: Proceeding: Termites in Humid Tropics, New Delhi Symposium, 1960, pp. 243–245.

    Google Scholar 

  • Kurian, C., & Pillai, G. B. (1964). Rhinoceros beetles, a major menace to coconut cultivation. World Crops, 16, 20–24.

    Google Scholar 

  • Kurian, C., Pillai, G. B., Antony, J., Abraham, V. A., & Natarajan, P. (1983). Biological control of insect pest of coconut. In: Nayar N M (eds) Proceedings of international symposium of coconut research and development. Wiley Eastern, New Delhi, pp. 361–375.

    Google Scholar 

  • Lefroy, H. M. (1906). Indian insect pests, Calcutta (p. 318).

    Google Scholar 

  • Lever R. J. (1969a). Pests of the coconut palms (FAO plant production and protection series). No. 77. 190.

    Google Scholar 

  • Lever, R. J. (1969b). Pests of coconut palm. Food and Agriculture Organization of the United Nations, Agricultural Studies, No. 77, p 190.

    Google Scholar 

  • Mahapatro, G. K., & Kumar, S. (2015). Review on incidence and management of coconut termites. Indian Journal of Entomology, 77(2), 152–159.

    Google Scholar 

  • Manjeri, G., Muhamad, R., Faridah, Q. Z., & Tan, S. G. (2013). Morphometric analysis of Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae) from oil palm plantations. Coleopts Bull, 67, 194–200.

    Google Scholar 

  • Marshall, S., Moore, A., Vaqalo, M., Noble, A., & Jackson, T. (2017). A new haplotype of the coconut rhinoceros beetle, Oryctes rhinoceros, has escaped biological control by Oryctes rhinoceros nudivirus and is invading Pacific Islands. Journal of Invertebrate Pathology., 149, 127–134.

    PubMed  Google Scholar 

  • Mathew, G. (1982). A survey of beetles damaging commercially important stored timber in Kerala. KFRI Research Report, 10, 92.

    Google Scholar 

  • Mathew, G. (2004). A study of wood boring beetles In the Kerala part of Nilgiri biosphere reserve. KFRI research report No. 260, pp 92.

    Google Scholar 

  • Mazza, G., Francardi, V., Simoni, S., Benvenuti, C., Cervo, R., Faleiro, J. R., Llacer, E., Longo, S., Nannelli, R., & Tarasco, E. (2014). An overview on the natural enemies of Rhynchophorus palm weevils, with focus on R. ferrugineus. Biological Control, 77, 83–92.

    Google Scholar 

  • Menon, K. P. V., & Pandalai, K. M. (1960). The coconut palm – a monograph (p. 384). Indian Central Coconut Committee.

    Google Scholar 

  • Menon, K. P. Y., & Pandalai, K. M. (1958). The Coconut Palm: A monograph (pp. 116–111). Indian central coconut committee.

    Google Scholar 

  • Meridja-Chihaoui, S., Harbi, A., Abbes, K., et al. (2020). Systematicity, persistence and efficacy of selected insecticides used in endotherapy to control the red palm weevil Rhynchophorus ferrugineus (Olivier, 1790) on Phoenix canariensis. Phytoparasitica, 48, 75–85. https://doi.org/10.1007/s12600-019-00776-5

    Article  CAS  Google Scholar 

  • Mohammed, M., Hamadttu, E.A., El-Shafie, A.F., & Mohammed R. Alhajhoj. (2020). Recent trends in early detection of Invasive red palm weevil Rhynchophorus ferrugineus Olivier. Invasive Species - Introduction Pathways, Economic Impact, and Possible Management Options. Intech open pp. 1–16.

    Google Scholar 

  • Mohan, D., Shi, J., Nicholas, D. D., Pittman, C. U., Steele, P. H., & Cooper, J. E. (2008). Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis. Chemosphere, 71, 456–465.

    CAS  PubMed  Google Scholar 

  • Mohan, K. S., Jayapal, S. P., & Pillai, G. B. (1983). Baculovirus disease in Oryctes rhinoceros population in Kerala. Journal of Plantation Crop, 11, 154–161.

    Google Scholar 

  • Mohan, K. S., Jayapal, S. P., & Pillai, G. B. (1985). Diagnosis of baculovirus infection in coconut rhinoceros beetles by examination of excreta. Z Pflkranh Pflschutz, 93(4), 379–383.

    Google Scholar 

  • Mohan, K. S., & Pillai, G. B. (1982). A method for laboratory scale mass cultivation of Metarhizium anisopliae. Folia Microbiologica, 27, 281–283.

    CAS  PubMed  Google Scholar 

  • Mona, M. A. D. (2020). Insecticidal potential of cardamom and clove extracts on adult red palm weevil Rhynchophorus ferrugineus, Saudi. Journal of Biological Sciences, 27(1), 195–201.

    Google Scholar 

  • Moore, O. K. (1948). The coconut palm – Mankind’s greatest provider in the tropics. Economic Botany, 2(2), 119–144.

    Google Scholar 

  • Murphy, S. T., & Briscoe, B. R. (1999). The red palm weevil as an alien invasive: biology and prospects for biological control as a component of IPM. Biocontrol News and Information, 20, 35–45.

    Google Scholar 

  • Nair, C. P. R., Daniel, M., & Ponnamma, K. N. (1997). In K. K. N. Nambiar & M. K. Nair (Eds.), Integrated pest management in palms (p. 30). Coconut Development Board.

    Google Scholar 

  • Nair, M. R. G. K. (1986). Insects and Mites of crops in India (p. 408). ICAR, Publication.

    Google Scholar 

  • Nair, M. R. G. K. (1999). A monograph on crop pests of Kerala and their control (p. 227). Kerala Agricultural University Press.

    Google Scholar 

  • Ney, F. P., Malco, D. C. L., Senoro, D. B., & Catajay-Mani, M. (2019). The bio-mechanical properties of coco wood applied with Neem extracts: A potential preservative for sustainable building in Marinduque, Philippines. Sustainable Environmental Research, 29, 39. https://doi.org/10.1186/s42834-019-0041-4

    Article  CAS  Google Scholar 

  • Nirula, K. K. (1955). Investigations on the pests of coconut palm. Part II. Oryctes rhinoceros Linn. Indian Coconut Journal, 8, 161–180.

    Google Scholar 

  • Nirula, K. K., Antony, J., & Menon, K. P. V. (1952). The rhinoceros beetle (Oryctes rhinoceros L.) life history and habits. Indian Coconut Journal, 5, 57–70.

    Google Scholar 

  • Oduor, N., & Githiomi, J. (2006). Wood characteristics and properties of Cocos nucifera (the coconut tree) grown in Kwale District. Retrieved from http://fornistest.metla.fi/taxonomy/term/13/0?page=12

  • Owoyemi, J., Olaniran, S. O., & Aliyu, D. I. (2013). Effect of density on the natural resistance of ten selected Nigerian wood species to subterranean termites. PRO LIGNO, 9(1), 32–40.

    Google Scholar 

  • Panwar, V. P. S. (1995). Agricultural insect pests of crops and their management (p. 286). Kalyani Publishers Ludhiana.

    Google Scholar 

  • Peek, R. D. (1994). Utilization of coconut timber from North Sulawesi, Indonesia. Part 1: durability. IRG/WP/94-30044, 1–11.

    Google Scholar 

  • Peters, B. C., Bailleres, H., & Fitzgerald, C. J. (2014). Susceptibility of coconut wood to damage by subterranean termites (Isoptera: Mastotermitidae, Rhinotermitidae). BioResource, 9(2), 3132–3142.

    CAS  Google Scholar 

  • Pillai, N. K. (1919). Coconut, the wealth of Travancore. The Indian Journal of Agricultural Sciences, 14, 608–628.

    Google Scholar 

  • Rajan, P., Chandrika, M., Nair, C.P.R., & Josephrajkumar, A. (2009) Integrated pest management in coconut. Technical bulletin no. 55. ICAR- CPCRI, 20.

    Google Scholar 

  • Ramachandran, C. P., Kurien, C., & Mathew, J. (1963). Assessment of damage to coconut due to Oryctes rhinoceros L. Nature and damage caused by the beetle and factors involved in the estimation of loss. Indian Coconut Journal, 17, 3–12.

    Google Scholar 

  • Roonwal, M. L. (1979). Termite life and termite control in tropical south Asia (p. 177). Scientific Publishers.

    Google Scholar 

  • Sadakathulla, S., & Ramachandran, T. K. (1990). A novel method to control rhinoceros beetle, Oryctes rhinoceros L. in coconut. Indian Coconut Journal, 21(7–8), 10–12.

    Google Scholar 

  • Sankaran, T. (1962). Termites in relation to plant protection. In: Proceeding: Termites in Humid Tropics, New Delhi Symposium, 1960, pp. 232–236.

    Google Scholar 

  • Sathiamma, B., Mohan, C., & Gopal, M. (2001). Biocontrol Potential and its Exploitation in Coconut Pest Management. In R. K. Upadhyay, K. G. Mukerji, & B. P. Chamola (Eds.), Biocontrol Potential and its Exploitation in Sustainable Agriculture (pp. 2261–2283). Springer.

    Google Scholar 

  • Shanbhag, R. R., & Sundararaj, R. (2013). Physical and chemical properties of some imported woods and their degradation by termites. Journal of Insect Science, 13, 63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbing, E. P. (1914). Indian forest insects of economic importance- Coleoptera (648 pp). Government of India.

    Google Scholar 

  • Subaharan, K., Bhakthavatsalam, N., & Venugopal, V. (2019). Semiochemical based pest management of coconut red palm weevil Rhynchophorus ferrugineus (Dryopthoridae: Coleoptera). Pest management in Hort. Ecosystems, 25, 1–10.

    Google Scholar 

  • Subramanian, K. V. (2003). Coconut wood diversification for increased income. Indian Coconut Journal, 34(4), 10–18.

    Google Scholar 

  • Sujithra M., Rajkumar M., Hegde V., & Subramanian, P. (2019). A cost effective passive trapping technique for managing rhinoceros beetle menace in coconut plantations, In: Reddy, P. V. R., et al., (Eds.). Book of Souvenir and Abstracts, International Conference of Plant Protection in Horticulture; Advances and Challenges, 23-27 July 2019, Bengaluru. pp. 59.

    Google Scholar 

  • Sujithra, M., Rajkumar, M., Hegde, V., & Subramanian, P. (2021). A novel technique to guard juvenile palms from rhinoceros beetle attack. Indian Coconut Journal, 13(11), 22–23.

    Google Scholar 

  • Swapna, T.R. (2003). Rationalization of indigenous technical knowledge on pest management in the farm production systems of Palakkad district. M. Sc. Thesis, Kerala Agricultural University, Vellanikkara.

    Google Scholar 

  • Temiz, A., Alma, M. H., Terziev, N., Palanti, S., & Feci, E. (2010). Efficiency of bio-oil against wood destroying organisms. Journal of Biobased Materials and Bioenergy, 4, 317–323.

    CAS  Google Scholar 

  • Wattanapongsiri, A. (1966). A revision of the genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae). Department of Agriculture. Science Bulletin, 1(1), 418.

    Google Scholar 

  • Zelazny, B. (1979). Virulence of the baculovirus of Oryctes rhinoceros from ten locations in the Philippines and in Western Samoa. Journal of Invertebrate Pathology, 33(1), 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sujithra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sujithra, M., Rajkumar, M., Pai, S., Selvaraj, K. (2022). Prospects and Advances in the Management of Coconut Wood Borers. In: Sundararaj, R. (eds) Science of Wood Degradation and its Protection. Springer, Singapore. https://doi.org/10.1007/978-981-16-8797-6_7

Download citation

Publish with us

Policies and ethics