Skip to main content

Automated Detection of Cardiac Arrhythmia Based on a Hybrid CNN-LSTM Network

  • Conference paper
  • First Online:
Emergent Converging Technologies and Biomedical Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 841))

Abstract

Cardiac arrhythmia is an irregular sequence of electrical impulses which result in numerous shifts in heart rhythms. Such cardiac abnormalities can be observed using a standard medical examination known as electrocardiogram (ECG). However, with the drastic increase in heart disease patients, interpreting such pulsations on ECG can be time-consuming and a challenging task. Thus, the primary objective of this paper is to propose an automated system based on a hybrid model which consists of an amalgamation of convolutional neural networks (CNN) and long short-term memory (LSTM) in order to accurately detect and classify several cardiac arrhythmia ailments. The model incorporates a feature selection algorithm, principal component analysis (PCA), that ingresses the new features into 14-layers deep one-dimensional CNN-LSTM network. The experiment is conducted using PhysionNet’s MIT-BIH and PTB diagnostics datasets and multiple strategies have been contemplated for evaluation purposes: firstly, using smooth ECG signals with filtered noise and alternatively, using signals that encompass artificially generated noise based on a Gaussian distribution. The proposed system achieved an accuracy of 99% with the denoised sets and 98% using the data with artificially generated noise, exhibiting a consistent and robust generalization performance and possesses the potential to be used as an auxiliary tool to assist clinicians in arrhythmia diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. United Nation: Department of Economic and Social Affairs. Population Division. World Population Ageing: Highlights (ST/ESA/SER.A/430) (2019)

    Google Scholar 

  2. Zile M, Brutsaert D (2002) New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 105:1387–1393. American Heart Association

    Google Scholar 

  3. Thrainsdottir I, Hardarson T, Thorgeirsson G, Sigvaldason H, Sigfusson N (1993) The epidemiology of right bundle branch block and its association with cardiovascular morbidity—the reykjavik study. Eur Heart J 14(12):1590–1596. Oxford Academic

    Google Scholar 

  4. Fahy G, Pinski S, Miller D, McCabe N, Pye C, Walsh M, Robinson K (1996) Natural history of isolated bundle branch block. Am J Cardiol 77(14):1185–1190. ScienceDirect

    Google Scholar 

  5. Lown B, Wolf M (1971) Approaches to sudden death from coronary heart disease. Circulation 44(1):130–142. American Heart Association

    Google Scholar 

  6. Engström G, Hedblad B, Juul-Möller S, Tydén P, Janzon L (2000) Cardiac arrhythmias and stroke. Stroke 31(12):2925. National Library of Medicine

    Google Scholar 

  7. de Chazal P, O’Dwyer M, Reilly RB (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. Trans Biomed Eng 51(7):1196–1206. IEEE

    Google Scholar 

  8. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J (2019) A guide to deep learning in healthcare. Nat Med 25(1). ResearchGate

    Google Scholar 

  9. For the Advancement of Medical Instrumentation, A.: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. 4301 N. Fairfax Dr., Suite 301. American National Standards Institute (2013)

    Google Scholar 

  10. Kohli N, Verma NK, Roy A (2010) SVM based methods for arrhythmia classification in ECG. In: International conference on computer and communication technology (ICCCT). IEEE

    Google Scholar 

  11. Kohli N, Verma NK (2011) Arrhythmia classification using SVM with selected features. Int J Eng Sci Technol 3(8). African Journals Online

    Google Scholar 

  12. Desai U, Martis RJ, Nayak CG, Sarika K, Seshikala G (2015) Machine intelligent diagnosis of ECG for arrhythmia classification using DWT, ICA and SVM techniques. In: Annual IEEE India conference (INDICON). IEEE

    Google Scholar 

  13. Gao D, Madden M, Chambers D, Lyons G (2005) Bayesian ANN classifier for ECG arrhythmia diagnostic system: a comparison study. In: Proceedings. IEEE international joint conference on neural networks. IEEE

    Google Scholar 

  14. Jadhav S, Nalbalwar SL, Ghatol A (2012) Artificial neural network models based cardiac arrhythmia disease diagnosis from ECG signal data. Int J Comput Appl 44(15):8–13. ResearchGate

    Google Scholar 

  15. Zuo WM, Lu WG, Wang KQ, Zhang H (2008) Diagnosis of cardiac arrhythmia using kernel difference weighted KNN classifier. In: Computers in cardiology. IEEE

    Google Scholar 

  16. Yang F, Du J, Lang J, Lu W, Liu L, Jin C, Kang Q (2020) Missing value estimation methods research for arrhythmia classification using the modified kernel difference-weighted KNN algorithms. BioMed Res Int: 1–9. Hindawi

    Google Scholar 

  17. Lodhi AM, Qureshi AN, Sharif U, Ashiq Z (2018) A novel approach using voting from ECG leads to detect myocardial infarction. In: Proceedings of SAI intelligent systems conference, IntelliSys: intelligent systems and applications. Springer, pp 337–352

    Google Scholar 

  18. Yıldırım Ö, Pławiak P, Tan R-S, Acharya UR (2018) Arrhythmia detection using deep convolutional neural network with long duration ECG signals. In: Computers in biology and medicine. ScienceDirect

    Google Scholar 

  19. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M (2017) Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci: 415–416, 190–198. ResearchGate

    Google Scholar 

  20. Kachuee M, Fazeli S, Sarrafzadeh M (2018) ECG heartbeat classification: a deep transferable representation. In: IEEE international conference on healthcare informatics (ICHI). IEEE

    Google Scholar 

  21. Li F, Liu M, Zhao Y, Kong L, Dong L, Liu X, Hui M (2019) Feature extraction and classification of heart sound using 1D convolutional neural networks. EURASIP J Adv Sig Process (1):59. Springer

    Google Scholar 

  22. Baloglu UB, Talo M, Yildirim O, Tan RS, Acharya UR (2019) Classification of myocardial infarction with multi-lead ECG signals and deep CNN. In: Pattern recognition letters. ScienceDirect

    Google Scholar 

  23. Yin W, Kann K, Yu M, Schütze H (2017) Comparative study of CNN and RNN for natural language processing. ResearchGate

    Google Scholar 

  24. Singh S, Pandey SK, Pawar U, Janghel RR (2018) Classification of ECG arrhythmia using recurrent neural networks. Procedia Comput Sci 132:1290–1297. ScienceDirect

    Google Scholar 

  25. Schwab P, Scebba GC, Zhang J, Delai M, Karlen W (2017) Beat by beat: classifying cardiac arrhythmias with recurrent neural networks. In: Computing in cardiology conference (CinC). IEEE

    Google Scholar 

  26. Limam M, Precioso F (2017) AF detection and ECG classification based on convolutional recurrent neural network. In: 2017 computing in cardiology conference (CinC). IEEE

    Google Scholar 

  27. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220. American Heart Association

    Google Scholar 

  28. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16(1):321–357. ResearchGate

    Google Scholar 

  29. Scholkmann F, Boss J, Wolf M (2012) An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals. Algorithms 5(4):588–603. MDPI

    Google Scholar 

  30. Gent PV, Farah H, Nes NV, Arem BV (2018) Analysing noisy driver physiology real-time using off-the-shelf sensors: heart rate analysis software from the taking the fast lane project. ResearchGate

    Google Scholar 

  31. Zheng Z, Chen Z, Hu F, Zhu J, Tang Q, Liang Y (2020) An automatic diagnosis of arrhythmias using a combination of CNN and LSTM technology. Electronics 9(1):121. MDPI

    Google Scholar 

  32. Dunford R, Su Q, Tamang E (2014) The pareto principle. Plymouth Stud Sci 7(1):140–148. University of Plymouth

    Google Scholar 

  33. Zubair M, Kim J, Yoon C (2016) An automated ECG beat classification system using convolutional neural networks. In: 2016 6th international conference on IT convergence and security (ICITCS). ResearchGate

    Google Scholar 

  34. Lu L, Shin Y, Su Y, Karniadakis GE (2019) Dying ReLU and initialization: theory and numerical examples. Cornell University

    Google Scholar 

  35. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. MIT Press Direct

    Google Scholar 

  36. Yildirim Ö (2018) A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput Biol Med 96:189–202. ScienceDirect

    Google Scholar 

  37. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. Department of Computer Science, University of Toronto. Journal of Machine Learning Research

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shazzadur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahman, S., Rahman, S., Bahalul Haque, A.K.M. (2022). Automated Detection of Cardiac Arrhythmia Based on a Hybrid CNN-LSTM Network. In: Marriwala, N., Tripathi, C.C., Jain, S., Mathapathi, S. (eds) Emergent Converging Technologies and Biomedical Systems . Lecture Notes in Electrical Engineering, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-16-8774-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8774-7_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8773-0

  • Online ISBN: 978-981-16-8774-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics