Skip to main content

An Oxy-Fuel Power Plant for Hydrogen Production with Near-Zero Emissions

  • Conference paper
  • First Online:
SMART Automatics and Energy

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 272))

  • 627 Accesses

Abstract

The world trend for greenhouse gas emission mitigation determines the interest in hydrogen fuel, the wide use of which in power and transport industries requires a solution on large scale efficient and environmentally harmless production. Russia has large natural gas resources, therefore a transition to zero harmless emission power plants based on the energy production by methane conversion may be a prospective solution. The near-zero CO2 emission may be reached by the oxy-fuel combustion in a steam methane reforming facility. Computer simulation shows that the combined hydrogen and electricity production allows a 1.8% increase of fuel heat efficiency by utilization of syngas physical heat. At equal production of the supplied electricity and chemical energy of the produced hydrogen, the power plant efficiency is 54.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makarov, A.A., Mitrovaya, T.A., Kulagin, V.A.: Forecast of energy development in the world and Russia (Moscow: ERI RAS Moscow School of Management SKOLKOVO), p. 210 (2013)

    Google Scholar 

  2. Martins, F., Felgueiras, C., Smitkova, M., Caetano, N.: Energies 12(6), 964 (2019)

    Article  Google Scholar 

  3. IEA: Global Energy Review 2021. IEA, Paris (2021)

    Google Scholar 

  4. IEA: Net Zero by 2050: A Roadmap for the Global Energy Sector. IEA, Paris (2021)

    Google Scholar 

  5. IEA: World energy outlook 2020. IEA, Paris (2020)

    Google Scholar 

  6. Nikolaidis, P., Poullikkas, A.: Renew. Sust. Energ. Rev 67, 597–611 (2017)

    Article  Google Scholar 

  7. Hosseini, S.E., Wahid, M.A.: Renew Sust. Energ. Rev. 57, 850–866 (2016)

    Article  Google Scholar 

  8. Fahim, M.A., Al-sahhaf, T.A., Elkilani, A.: Fundamentals of Petroleum Refining. Elsevier), Amsterdam (2010)

    Google Scholar 

  9. Collodi, G., Azzaro, G., Ferrari, N., Santos, S.: Energy Procedia 114, 2690–2712 (2017)

    Article  Google Scholar 

  10. Kato, M., Maezawa, Y., Takeda, S., Hagiwara, Y., Kogo, R., Semba, K., Hamamura, M.: J. Ceram. Soc. JAPAN 113(1315), 252–254 (2005)

    Article  Google Scholar 

  11. Ahn, H., Luberti, M., Liu, Z., Brandani, S.: Int. J. Greenh. Gas Con. 16, 29–40 (2013)

    Article  Google Scholar 

  12. Krishnamurthy, S., Rao, V.R., Guntuka, S., Sharratt, P., Haghpanah, R., Rajendran, A., Amanullah, M., Karimi, I., Farooq, S.: AIChE J. 60(5), 1830–1842 (2014)

    Article  Google Scholar 

  13. Durand, B.: Carbon dioxide capture and storage (France: IAEA), p. 32 (2011).

    Google Scholar 

  14. Capocelli, M., Luberti, M., Inno, S., D’Antonio, F., Di Natale, F., Lancia, A.: J. CO2 Util. 32, 53–65 (2019)

    Google Scholar 

  15. Allam, R., Martin, S., Forrest, B., Fetvedt, J., Lu, X., Freed, D., Brown, W., Sasaki. T., Itoh, M., Manning, J.: Energy Procedia 114, 5948–5966 (2017).

    Google Scholar 

  16. Gou, C., Cai, R., Hong, H.: P. I. Mech. Eng. A-J Pow. 220(4), 315–325 (2006)

    Google Scholar 

  17. Rogalev, A., Rogalev, N., Kindra, V., Osipov, S.: Data Brief 27, 104682 (2019)

    Google Scholar 

  18. Steward, D., Ramsden, T., Zuboy, J.; H2A Central Hydrogen Production Model, Version 3 (Denver: National Renewable Energy Laboratory) p. 61 (2012).

    Google Scholar 

  19. Rogalev, A., Grigoriev, E., Kindra, V., Rogalev, N.: J. Clean. Prod. 236, 117592 (2019)

    Google Scholar 

  20. Kindra, V., Rogalev, A., Zlyvko, O., Zonov, A., Smirnov, M., Kaplanovich, I.: Arch. Thermodyn, 191–202 (2020)

    Google Scholar 

  21. Wang, L., Yang, Y., Shen, W., Kong, X., Li, P., Yu, J., Rodrigues, A.E.: I & EC Research 52(23), 7947–7955 (2013)

    Google Scholar 

Download references

Acknowledgements

The investigation was carried out within the framework of the project «Research and development of technical solution for improvement of the oxy-fuel power plant efficiency and maneuverability» with the support of a grant from NRU «MPEI» for implementation of scientific research program «Energy», «Electronics, Radio Engineering and IT», and «Industry 4.0, Technologies for Industry and Robotics in 2020-2022”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kindra, V., Zlyvko, O., Zonov, A., Kovalev, D. (2022). An Oxy-Fuel Power Plant for Hydrogen Production with Near-Zero Emissions. In: Solovev, D.B., Kyriakopoulos, G.L., Venelin, T. (eds) SMART Automatics and Energy. Smart Innovation, Systems and Technologies, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-16-8759-4_31

Download citation

Publish with us

Policies and ethics