Skip to main content

Economic Feasibility Assessment of Using Ammonia for Hydrogen Transportation

  • Conference paper
  • First Online:
SMART Automatics and Energy

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 272))

  • 620 Accesses

Abstract

In the near future, the energy transition will dictate the need for the hydrogen production and consumption in industrial amounts. This will result in the development of a global market for hydrogen and the need to find economically viable methods to transport it. Russia can be a promising country for the hydrogen production due to its large natural energy resources; however, promising sales markets are located in the European and Asia–Pacific regions, which requires the development of delivery methods. One of the substances with the highest energy content, both by volume and by weight, is ammonia, which can be a promising medium for hydrogen transportation. This paper assesses the economic feasibility of using ammonia for the transportation of chemically bound hydrogen over long distances in industrial amounts. Based on the assessment results, the use of ammonia for the hydrogen transportation in industrial amounts can be justified when using sea or rail transport at distances over 2000–3000 km.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tagliapietra, S., Zachmann, G., Edenhofer. O., Glachant, J.-M., Linares, P., Loeschel, A.: Energy Policy 132, 950–4 (2019)

    Google Scholar 

  2. Stangarone, T.: Clean. Technol. Environ. Policy 23, 509–516 (2020)

    Google Scholar 

  3. Abe, J.O., Popoola, A.P.I., Ajenifuja, E., Popoola, O.M.: Int. J. Hydrog. Energy 44, 15072–15086 (2019)

    Article  Google Scholar 

  4. Iida, S., Sakata, K.: Clean. Energy 3, 105–113 (2019)

    Google Scholar 

  5. Bruce, S., Temminghoff, M., Hayward. J., Schmidt, E., Munnings, C., Palfreyman, D., Hartley, P.: National Hydrogen Roadmap. CSIRO, Australia (2018)

    Google Scholar 

  6. Niermann, M., Beckendorff, A., Kaltschmitt, M., Bonhoff, K.: Int. J. Hydrog. Energy 44, 6631–6654 (2019)

    Article  Google Scholar 

  7. Bellosta von Colbe, J., et al.: Int. J. Hydrog. Energy 44, 7780–808 (2019)

    Google Scholar 

  8. Giddey, S., Badwal, S.P.S., Munnings, C., Dolan, M.: ACS Sustain. Chem. Eng. 5, 10231–10239 (2017)

    Article  Google Scholar 

  9. Rivard, E., Trudeau, M., Zaghib, K.: Materials 12, 1973 (2019)

    Article  Google Scholar 

  10. Yáñez, M., Relvas, F., Ortiz, A., Gorri, D., Mendes, A., Ortiz, I.: Sep. Purif. Technol. 240, 116334 (2020)

    Google Scholar 

  11. UK’s, Department for Business, Energy and Industrial Strategy 2020 Ammonia to Green Hydrogen Project. Feasibility study. UK BEIS, London (2020)

    Google Scholar 

  12. Lamb, K.E., Dolan, M.D., Kennedy, D.F.: Int. J. Hydrog. Energy 44, 3580–3593 (2019)

    Article  Google Scholar 

  13. Lu, G.Q., Diniz da Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H., Kreutz, T.: J. Colloid Interface Sci. 314, 589–603 (2007)

    Google Scholar 

  14. Itoh, N., Kikuchi, Y., Furusawa, T., Sato, T.: Int. J. Hydrog. Energy S0360319920311289 (2020)

    Google Scholar 

  15. Dolan, M.D., Dave, N.C., Ilyushechkin, A.Y., Morpeth, L.D., McLennan, K.G.: J. Membr. Sci. 285, 30–55 (2006)

    Article  Google Scholar 

  16. Meindersma, G.W.: Membrane Permeation and Pressure Swing Adsorption (PSA) for the Production of High Purity Hydrogen Effective Industrial Membrane Processes: Benefits and Opportunities. In: Turner M.K. (ed.), Springer Netherlands, Dordrecht, pp. 391–400 (1991)

    Google Scholar 

  17. H2A: Hydrogen Analysis Production Models National Renewable Energy Laboratory [Online] Available: https://www.nrel.gov/hydrogen/h2a-production-models.html

  18. Hub indices Trading System Administrator of Wholesale Electricity Market Transactions

    Google Scholar 

  19. In 2019, energy prices in 1 zone increased by 3.2%, in 2 CH—by 0.2% Energy portal in Russia and in the world [Online] Available: http://peretok.ru/news/generation/21612/

  20. Official exchange rates Bank of Russia [Online] Available: https://cbr.ru/currency_base/dynamics

  21. James, B., Colella, W., Moton, J., Saur, G., Ramsden, T.: PEM electrolysis H2A production case study documentation. NREL, USA (2013)

    Book  Google Scholar 

  22. IEA The Future of Hydrogen. IEA, Japan

    Google Scholar 

  23. Simon, R., Rahul, A., Chao, F.: Chem. Eng. Trans. 81, 1015–1020 (2020)

    Google Scholar 

  24. Thomas, G., Parks, G.: Potential Roles of Ammonia in a Hydrogen Economy. U.S. Department of Energy, USA (2006)

    Google Scholar 

  25. Raab, M., Maier, S., Dietrich, R-U.: Int. J. Hydrog. Energy S036031992034876X (2021)

    Google Scholar 

  26. Aasadnia, M., Mehrpooya, M.: Appl. Energy 212, 57–83 (2018)

    Article  Google Scholar 

  27. Decker, L.: Latest Global Trend in Liquid Hydrogen Production. Linde, Brussels, p. 34 (2019)

    Google Scholar 

Download references

Acknowledgements

The investigation was carried out within the framework of the project “Technological complex for hydrogen production and storage as part of carbon dioxide energy cycles” with the support of a grant from NRU “MPEI” for implementation of scientific research programs “Energy,” “Electronics, Radio Engineering and IT,” and “Industry 4.0, Technologies for Industry and Robotics in 2020-2022.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Naumov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malenkov, A.S., Naumov, V.Y., Shabalova, S.I., Kharlamova, D.M. (2022). Economic Feasibility Assessment of Using Ammonia for Hydrogen Transportation. In: Solovev, D.B., Kyriakopoulos, G.L., Venelin, T. (eds) SMART Automatics and Energy. Smart Innovation, Systems and Technologies, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-16-8759-4_10

Download citation

Publish with us

Policies and ethics