Abstract
The accuracy and reliability of material parameters obtained through small scale testing are a challenge as testing is limited by the difficulty in sample preparation, its mounting, and alignment. Thus, there is great interest in the development of high throughput testing methodologies, to generate a large amount of data using fewer tests. In a cantilever, in addition to ease of gripping and alignment, the strain gradient along thickness (as well as length) enables the generation of a large volume of data from a single specimen, thereby improving accuracy and reliability. However, the non-linear stress-strain relationship in plasticity leads to redistribution of stress across the cantilever to maintain section planarity. The extraction of flow parameters using a cantilever relies upon the estimation of stress during the deformation. In the present work, a framework is developed to extract strain rate sensitivity from a single cantilever during a deflection rate-controlled test. This demonstrates the effectiveness of bending in reducing the number of tests required to obtain strain rate sensitivity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- E :
-
Young’s modulus
- \({\varepsilon }_{t}\) :
-
Total strain
- \({\varepsilon }_{el}\) :
-
Elastic strain
- \({\varepsilon }_{pl}\) :
-
Plastic strain
- \({\varepsilon }_{t,h}\) :
-
Total strain at distance ‘h’ from the neutral axis
- \({\sigma }_{h}\) :
-
Stress at distance ‘h’ from the neutral axis
- \({\sigma }_{y}\) :
-
Stress at distance ‘y’ from the neutral axis
- \({M}_{x}\) :
-
Moment acting at a distance ‘x’ from the free end
- \(\kappa\) :
-
Curvature of the neutral axis of the beam at any section
- \(F\) :
-
Force
- \(L\) :
-
Length of the cantilever
- \(b\) :
-
Width of the cantilever
- \(h\) :
-
Half-height of the cantilever
- \({l}_{i}\) :
-
Length of ith element
- \({\theta }_{i}\) :
-
Slope of ith element
- \({\delta }_{i}\) :
-
Deflection of ith element
References
Nadai A (1931) Plasticity, 2nd edn. McGraw-Hill Book Company, New York
Tresca HE (1868) Mémoire sur l'écoulement des corps solides. M´em Pres Par Div Sav 18:733–799
de Saint-Venant B (1870) Sur l’etablissement des equations des mouvements interieurs operes dans les corps solides ductiles au-dela des limites ou l’elasticite pourrait les ramener a leur premier etat. Comptes Rendus 70:473–480
Levy M (1870) Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état. CR Acad Sci Paris 70:1323–1325
Mises RV (1913) Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr Ges Wiss Göttingen Math-Phys Kl 1913:582–592
Prandtl, L.: Spannungsverteilung in plastischen Körpern. In: Proceedings of the 1st international congress on applied mechanics, Delft, pp 43–46 (1924)
Reuss A (1930) Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. ZAMM-J Appl Math Mech/Z Angew Math Mech 10(3):266–274
Schmidt R (1932) Über den zusammenhang von spannungen und formänderungen im verfestigungsgebiet. Ingenieur-archiv 3(3):215–235
Odqvist FKG (1933) Die verfestigung von flusseisenähnlichen körpern. ein beitrag zur plastizitätstheorie. ZAMM‐Journal Appl Math Mech/Z Angew Math Mech 13(5):360–363
Prager W (1935) Der Einfluß der Verformung auf die Fließbedingung zähplastischer Körper. ZAMM-J Appl Math Mech/Z Angew Math Mech 15(1–2):76–80
Howard JE (1890) Physical properties of iron and steel at high temperature. Iron Age 585
Nadai A, Manjoine MJ (1941) High-speed tension tests at elevated temperatures—parts II and III. J Appl Mech 8:A77
Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22–32
Carreker RP, Hibbard WR (1953) Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size. Acta Metall 1(6):654–663
Hayden HW, Brophy JH (1968) The interrelation of grain size and superplastic deformation in Ni-Cr-Fe alloys. ASM Trans Q 61(3):542–549 (1968)
Kocks UF (1976) Laws for work-hardening and low-temperature creep. J Eng Mater Technol 98(1):76–85
Johnson AE (1950) A high-sensitivity torsion creep unit. J Sci Instrum 27(3):74–75
Robertson A, Cook G (1913) The transition from the elastic to the plastic state in mild steel. Proc R Soc Lond 88(605):462–471
Prager W (1937) Mécanique des solides isotropes au delà du domaine élastique, vol 87. Gauthier-Villar, Paris
Thum A, Wunderlich F (1932) Die Fließgrenze bei behinderter Formänderung. Forsch Geb Ing A 3(6):261–270
Volterra E, Danusso A, Colonnetti G (1943) Results of experiments on metallic beams bent beyond the elastic limit. J Inst Civ Eng 20(5):1–19
Roderick JW, Phillipps IH (1950) The carrying capacity of simply supported mild steel beams. BWRA
Trifan D (1949) On the plastic bending of circular plates under uniform transverse loads. Q Appl Math 6(4):417–427
Popov EP, Khojasteh-Bakht M, Yaghmai S (1967) Bending of circular plates of hardening material. Int J Solids Struct 3(6):975–988
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Goel, P., Kumar, P., Jayaram, V. (2022). Extracting Strain Rate Sensitivity of Metals from a Single Cantilever Under Bending. In: Jonnalagadda, K., Alankar, A., Balila, N.J., Bhandakkar, T. (eds) Advances in Structural Integrity. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-8724-2_32
Download citation
DOI: https://doi.org/10.1007/978-981-16-8724-2_32
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-8723-5
Online ISBN: 978-981-16-8724-2
eBook Packages: EngineeringEngineering (R0)