Skip to main content

Extracting Strain Rate Sensitivity of Metals from a Single Cantilever Under Bending

  • Conference paper
  • First Online:
Advances in Structural Integrity

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 604 Accesses

Abstract

The accuracy and reliability of material parameters obtained through small scale testing are a challenge as testing is limited by the difficulty in sample preparation, its mounting, and alignment. Thus, there is great interest in the development of high throughput testing methodologies, to generate a large amount of data using fewer tests. In a cantilever, in addition to ease of gripping and alignment, the strain gradient along thickness (as well as length) enables the generation of a large volume of data from a single specimen, thereby improving accuracy and reliability. However, the non-linear stress-strain relationship in plasticity leads to redistribution of stress across the cantilever to maintain section planarity. The extraction of flow parameters using a cantilever relies upon the estimation of stress during the deformation. In the present work, a framework is developed to extract strain rate sensitivity from a single cantilever during a deflection rate-controlled test. This demonstrates the effectiveness of bending in reducing the number of tests required to obtain strain rate sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

E :

Young’s modulus

\({\varepsilon }_{t}\) :

Total strain

\({\varepsilon }_{el}\) :

Elastic strain

\({\varepsilon }_{pl}\) :

Plastic strain

\({\varepsilon }_{t,h}\) :

Total strain at distance ‘h’ from the neutral axis

\({\sigma }_{h}\) :

Stress at distance ‘h’ from the neutral axis

\({\sigma }_{y}\) :

Stress at distance ‘y’ from the neutral axis

\({M}_{x}\) :

Moment acting at a distance ‘x’ from the free end

\(\kappa\) :

Curvature of the neutral axis of the beam at any section

\(F\) :

Force

\(L\) :

Length of the cantilever

\(b\) :

Width of the cantilever

\(h\) :

Half-height of the cantilever

\({l}_{i}\) :

Length of ith element

\({\theta }_{i}\) :

Slope of ith element

\({\delta }_{i}\) :

Deflection of ith element

References

  1. Nadai A (1931) Plasticity, 2nd edn. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  2. Tresca HE (1868) Mémoire sur l'écoulement des corps solides. M´em Pres Par Div Sav 18:733–799

    Google Scholar 

  3. de Saint-Venant B (1870) Sur l’etablissement des equations des mouvements interieurs operes dans les corps solides ductiles au-dela des limites ou l’elasticite pourrait les ramener a leur premier etat. Comptes Rendus 70:473–480

    Google Scholar 

  4. Levy M (1870) Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état. CR Acad Sci Paris 70:1323–1325

    MATH  Google Scholar 

  5. Mises RV (1913) Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr Ges Wiss Göttingen Math-Phys Kl 1913:582–592

    MATH  Google Scholar 

  6. Prandtl, L.: Spannungsverteilung in plastischen Körpern. In: Proceedings of the 1st international congress on applied mechanics, Delft, pp 43–46 (1924)

    Google Scholar 

  7. Reuss A (1930) Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. ZAMM-J Appl Math Mech/Z Angew Math Mech 10(3):266–274

    Article  Google Scholar 

  8. Schmidt R (1932) Über den zusammenhang von spannungen und formänderungen im verfestigungsgebiet. Ingenieur-archiv 3(3):215–235

    Article  Google Scholar 

  9. Odqvist FKG (1933) Die verfestigung von flusseisenähnlichen körpern. ein beitrag zur plastizitätstheorie. ZAMM‐Journal Appl Math Mech/Z Angew Math Mech 13(5):360–363

    Google Scholar 

  10. Prager W (1935) Der Einfluß der Verformung auf die Fließbedingung zähplastischer Körper. ZAMM-J Appl Math Mech/Z Angew Math Mech 15(1–2):76–80

    Article  Google Scholar 

  11. Howard JE (1890) Physical properties of iron and steel at high temperature. Iron Age 585

    Google Scholar 

  12. Nadai A, Manjoine MJ (1941) High-speed tension tests at elevated temperatures—parts II and III. J Appl Mech 8:A77

    Article  Google Scholar 

  13. Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22–32

    Article  Google Scholar 

  14. Carreker RP, Hibbard WR (1953) Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size. Acta Metall 1(6):654–663

    Article  Google Scholar 

  15. Hayden HW, Brophy JH (1968) The interrelation of grain size and superplastic deformation in Ni-Cr-Fe alloys. ASM Trans Q 61(3):542–549 (1968)

    Google Scholar 

  16. Kocks UF (1976) Laws for work-hardening and low-temperature creep. J Eng Mater Technol 98(1):76–85

    Article  Google Scholar 

  17. Johnson AE (1950) A high-sensitivity torsion creep unit. J Sci Instrum 27(3):74–75

    Article  Google Scholar 

  18. Robertson A, Cook G (1913) The transition from the elastic to the plastic state in mild steel. Proc R Soc Lond 88(605):462–471

    Google Scholar 

  19. Prager W (1937) Mécanique des solides isotropes au delà du domaine élastique, vol 87. Gauthier-Villar, Paris

    Google Scholar 

  20. Thum A, Wunderlich F (1932) Die Fließgrenze bei behinderter Formänderung. Forsch Geb Ing A 3(6):261–270

    Article  Google Scholar 

  21. Volterra E, Danusso A, Colonnetti G (1943) Results of experiments on metallic beams bent beyond the elastic limit. J Inst Civ Eng 20(5):1–19

    Article  Google Scholar 

  22. Roderick JW, Phillipps IH (1950) The carrying capacity of simply supported mild steel beams. BWRA

    Google Scholar 

  23. Trifan D (1949) On the plastic bending of circular plates under uniform transverse loads. Q Appl Math 6(4):417–427

    Article  MathSciNet  Google Scholar 

  24. Popov EP, Khojasteh-Bakht M, Yaghmai S (1967) Bending of circular plates of hardening material. Int J Solids Struct 3(6):975–988

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goel, P., Kumar, P., Jayaram, V. (2022). Extracting Strain Rate Sensitivity of Metals from a Single Cantilever Under Bending. In: Jonnalagadda, K., Alankar, A., Balila, N.J., Bhandakkar, T. (eds) Advances in Structural Integrity. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-8724-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8724-2_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8723-5

  • Online ISBN: 978-981-16-8724-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics