Skip to main content

Improving Survival Rate by Estimating the Progression of Pulmonary Fibrosis

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 838)


Pulmonary Fibrosis (PF) is a chronic and progressive lung disease, it tightens the lungs and make a person unable to breath. A person suffering with PF can experience at different rates based on their age, health conditions, and lifestyle and so on. Basically this PF occurs without any cause or else when they are exposed to environmental hazards and autoimmune diseases. The outcomes can range from long-term stability to rapid deterioration. There is no cure for PF. The life expectancy of patients with PF is 3–5 years in average after diagnosis. We used CNN model and multivariate regression analysis for the prediction and progression of the PF. Early detection of the disease is the key for slowing progression and happens only when the patient is known of their severity. PF patients will lose 150–200 mL of lung capacity in average, which can be monitored by spirometry. Disease stage of the patient is determined by their lung capacity and the severity of their symptoms. Current procedures make fibrotic related lung diseases became problematic to treat by considering chest CT scan yet, does not cure. By using data science, CT scan of their lungs, machine learning techniques, image, metadata and baseline FVC as input the project predicts the stage of severity and progress of the patient.


  • PF
  • CNN
  • FVC
  • Usual interstitial pneumonia
  • CT scan
  • Multivariate regression

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8550-7_45
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8550-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Schiffman G, Cunha JP, Stoppler MC (2020) Pulmonary fibrosis: symptoms and causes, reviewed medically (2020)

    Google Scholar 

  2. Feldman J, Lynch J. Stages of idiopathic pulmonary fibrosis

    Google Scholar 

  3. Trusculescu AA, Manolescu D, Tudorache E, Oancea C (2020) Deep learning in interstitial lung disease-how long until daily practice. Springer

    Google Scholar 

  4. Christe A, Peters AA, Drakopoulos D, Heverhagen JT (2019) Computer-aided diagnosis of pulmonary fibrosis using deep learning and ct images. Invest Radiol (2019)

    Google Scholar 

  5. Diridolloua T, Sohier L, Rousseauc C, Angibauda A, Chauvina P, Gaignona T, Tas M, Lemerre J, Kerjouana M, Saléa A, Lederlind M, Jouneau S (2020) Idiopathic pulmonary fibrosis: significance of the usual interstitial pneumonia (UIP) CT-scan patterns defined in new international guidelines; (2018) made online available from (2020)

    Google Scholar 

  6. Ezhil Swanly V, Selvam L, Mohan Kumar P, Arokia Renjith J, Arunachlam M, Shunmuganathan KL (2013) Smart spotting of pulmonary TB cavities using CT images. Published Date (2013), Revised in (2013); Accepted in (2013)

    Google Scholar 

  7. Kaggle competitions download—OSIC-pulmonary-fibrosis-progression

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gutala, J., Kalepalli, N.S., Rudrapati, M., Kalyani, G. (2022). Improving Survival Rate by Estimating the Progression of Pulmonary Fibrosis. In: Chakravarthy, V.V.S.S.S., Flores-Fuentes, W., Bhateja, V., Biswal, B. (eds) Advances in Micro-Electronics, Embedded Systems and IoT. Lecture Notes in Electrical Engineering, vol 838. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8549-1

  • Online ISBN: 978-981-16-8550-7

  • eBook Packages: EngineeringEngineering (R0)