Skip to main content

Advanced 2D Nanomaterial Composites: Applications in Adsorption of Water Pollutants and Toxic Gases

  • Chapter
  • First Online:
2D Nanomaterials for Energy and Environmental Sustainability

Abstract

At present, the world is facing the most challenging environmental issues including air and water pollution due to rapid industrialization, indiscriminate increase in population and energy demands. To address these issues, adsorption techniques that are simple, efficient, cheap with less environmental impact are employed for capturing toxic gases and water pollutants. Two-dimensional (2D) nanomaterials are emerging as a new class of adsorbents in contrast to the traditional adsorbents. This could be attributed to their high surface area-to-volume ratio, atomic-level thickness, excellent mechanical strength and entirely accessible active sites. Recently, many scientists have vested their research interests in atomically thin 2D nanomaterial composites for a variety of applications such as removal of toxic gases and water treatment, to name a few. This chapter mainly focuses on the state-of-the-art development of novel 2D nanomaterials, namely metal nitrides (MXenes), phosphorene and transition metal dichalcogenides (TMDCs) as potential adsorbents for the adsorptive removal of toxic gases from the air, and organic dyes, and heavy metal ions (HMIs) removal from aqueous media. At first, the synthesis and properties of various types of 2D nanomaterial composites used for the adsorptive removal of water pollutants and toxic gases are reviewed and outlined in brief. Then, the removal of HMIs, organic dyes, and toxic gases using different 2D nanomaterials composites are discussed in detail. The chapter finally concludes with current challenges and future research needed to further advance the development of novel 2D nanomaterial composites for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Au NPs:

Gold nanoparticles

BPNs/ZnO:

Black phosphorus nanosheets/ZnO

CeO2–MoS2:

Cerium-doped molybdenum disulphide

CH4N2S:

Thiourea

CNFs:

Carbon nano fibers

CR:

Congo red

EY:

Eosin Y

FA:

Fuchsin acid

HCl:

Hydrochloric acid

MB:

Methylene blue

MG:

Malachite green

MNP-PN-TNT:

Magnetic nanoparticle-Phosphorene-Titanium nano tubes

MO:

Methyl orange

MoS2/CuS NCs:

Molybdenum disulfide/copper(II)sulphide nanosheet composites

MoS2/GQD:

Molybdenum disulfide/graphene quantum dot nanocomposite

MoS2@2DMMT:

Molybdenum disulfide-montmorillonite

MoS2-g-PDMA:

Molybdenum disulfide-grafted-poly(diethyl (4-vinylbenzyl) phosphonate-co-maleic anhydride)

MoS2-rGO hybrid:

Molybdenum disulphide-reduced graphene oxide

MX@ Fe3O4:

MXene decorated with Fe3O4

MXene-COOH@(PEI/PAA)n:

Carboxyl modified MXene@(polyethylene polyimide/poly (acrylic acid)

MXene/LDH:

MXene/Layered double metal hydroxide

NaF:

Sodium fluoride

NMP:

N-methyl-2-pyrrolidone

NR:

Neutral red

RhB:

Rhodamine B

RhB 6G:

Rhodamine 6G

RSM:

Response surface methodology

ST:

Safranine T

Ti3C2–SO3H:

Sulfonic groups functionalized titanium carbide

Ti3C2Tx-PDOPA:

MXene-Levodopa composite

TNT:

Titanium nano tubes

TPAOH:

Tetrapropylammonium hydroxide

WO3–BPNs:

Tungsten trioxide-black phosphorus composites

WS2:

Tungsten disulfide

WSe2:

Tungsten diselenide

ZnIn2S4/protonated g-C3N4:

Zinc indium sulfide/protonated graphitic carbon nitride

References

  1. Yu M-H (2005) Environmental toxicology: biological and health effects of pollutants. Water Research

    Google Scholar 

  2. Jasper JT, Yang Y, Hoffmann MR (2017) Toxic byproduct formation during electrochemical treatment of latrine wastewater. Environ Sci Technol. https://doi.org/10.1021/acs.est.7b01002

    Article  Google Scholar 

  3. Ghangrekar MM, Chatterjee P (2018) Water pollutants classification and its effects on environment. In: Carbon nanostructures. Springer International Publishing, pp 11–26. https://doi.org/10.1007/978-3-319-95603-9_2

  4. Jung LY, Chen JJ, Cao WZ, Persson KM, Ouyang T, Zhang L, Xie X, Liu F, Li J, Chang CT (2019) Novel materials for Cr(VI)adsorption by magnetic titanium nanotubes coated phosphorene. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.04.103

    Article  Google Scholar 

  5. Fathi A, Mohamed T, Claude G, Maurin G, Mohamed BA (2006) Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Res. https://doi.org/10.1016/j.watres.2006.03.013

    Article  Google Scholar 

  6. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today. https://doi.org/10.1016/S0920-5861(99)00102-9

    Article  Google Scholar 

  7. Abdulgader HA, Kochkodan V, Hilal N (2013) Hybrid ion exchange—pressure driven membrane processes in water treatment: a review. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2013.05.052

    Article  Google Scholar 

  8. Rosman N, Salleh WNW, Mohamed MA, Jaafar J, Ismail AF, Harun Z (2018) Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2018.07.118

    Article  Google Scholar 

  9. Ali S, Tanweer MS, Alam M (2020) Kinetic, isothermal, thermodynamic and adsorption studies on Mentha piperita using ICP-OES. Surf Interfaces. https://doi.org/10.1016/j.surfin.2020.100516

    Article  Google Scholar 

  10. Jiménez AM, Borja R, Martín A (2003) Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochem. https://doi.org/10.1016/S0032-9592(02)00325-4

    Article  Google Scholar 

  11. Feng X, Y, Zongxue, Long R, Li X, Shao L, Zeng H, Zeng G, Zuo Y (2020) Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117525

    Article  Google Scholar 

  12. Ma Y, Zhao J, Yang BL (2006) Removal of H2S in waste gases by an activated carbon bioreactor. Int Biodeterior Biodegradation. https://doi.org/10.1016/j.ibiod.2005.10.010

    Article  Google Scholar 

  13. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J. https://doi.org/10.1016/j.cej.2016.09.029

    Article  Google Scholar 

  14. Anghel D, Lascu A, Epuran C, Fratilescu I, Ianasi C, Birdeanu M, Fagadar-Cosma E (2020) Hybrid materials based on silica matrices impregnated with pt-porphyrin or ptnps destined for Co2 gas detection or for wastewaters color removal. Int J Mol Sci. https://doi.org/10.3390/ijms21124262

    Article  Google Scholar 

  15. Yan Z, Tang S, Zhou X, L, Yang, Xiao X, Chen H, Qin Y, Sun W (2019) All-silica zeolites screening for capture of toxic gases from molecular simulation. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2018.02.025

    Article  Google Scholar 

  16. Ahmad R, Ansari K (2020) Polyacrylamide-grafted Actinidia deliciosa peels powder (PGADP) for the sequestration of crystal violet dye: isotherms, kinetics and thermodynamic studies. Appl Water Sci. https://doi.org/10.1007/s13201-020-01263-7

    Article  Google Scholar 

  17. Li J, Wang H, Yuan X, Zhang J, Chew JW (2020) Metal-organic framework membranes for wastewater treatment and water regeneration. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2019.213116

    Article  Google Scholar 

  18. Rajapakse M, Karki B, Abu UO, Pishgar S, Rajib Khan Musa Md, Shah Riyadh SM, Yu M, Sumanasekera G, Jasinski JB (2021) Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. npj 2D materials and applications. Nat Res https://doi.org/10.1038/s41699-021-00211-6

  19. Naguib M, Kurtoglu M, Presser V, Jun L, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2. Adv Mater. https://doi.org/10.1002/adma.201102306

    Article  Google Scholar 

  20. Rasool K, Pandey RP, Abdul Rasheed P, Buczek S, Gogotsi Y, Mahmoud KA (2019) Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater Today. https://doi.org/10.1016/j.mattod.2019.05.017

    Article  Google Scholar 

  21. Ying Y, Liu Y, Wang X, Mao Y, Cao W, Pan H, Peng X (2015) Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl Mater Interfaces. https://doi.org/10.1021/am5074722

    Article  Google Scholar 

  22. Shahzad A, Rasool K, Miran W, Nawaz M, Jang J, Mahmoud KA, Lee DS (2017) Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b02695

    Article  Google Scholar 

  23. Zou G, Guo J, Peng Q, Zhou A, Zhang Q, Liu B (2015) Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J Mater Chem A. https://doi.org/10.1039/c5ta07343j

    Article  Google Scholar 

  24. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A (2017) 2D transition metal dichalcogenides. Nat Rev Mater. https://doi.org/10.1038/natrevmats.2017.33

    Article  Google Scholar 

  25. Tian C, Xiang X, Juwei W, Li B, Cai C, Khan B, Chen H, Yuan Y, Xiaotao Z (2018) Facile synthesis of MoS2/CuS nanosheet composites as an efficient and ultrafast adsorbent for water-soluble dyes. J Chem Eng Data. https://doi.org/10.1021/acs.jced.8b00593

    Article  Google Scholar 

  26. Hu X, Yang H, Gao M, Tian H, Li Y, Liang Z, Jian X (2019) Insights into the photoassisted electrocatalytic reduction of CO2 over a two-dimensional MoS2 nanostructure loaded on SnO2 nanoparticles. ChemElectroChem. https://doi.org/10.1002/celc.201900632

    Article  Google Scholar 

  27. Kuang A, Kuang M, Yuan H, Wang G, Chen H, Yang X (2017) Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2017.03.135

    Article  Google Scholar 

  28. Zhang HP, Hou Jl, Wang Y, Tang PP, Zhang YP, Lin XY, Liu C, Tang Y (2017) Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: a DFT study. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.06.120

  29. Kumar R, Ansari SA, Barakat MA, Aljaafari A, Cho MH (2018) A polyaniline@MoS2-based organic-inorganic nanohybrid for the removal of Congo red: adsorption kinetic, thermodynamic and isotherm studies. New J Chem. https://doi.org/10.1039/c8nj02803f

    Article  Google Scholar 

  30. Zhang P, Xiang M, Liu H, Yang C, Deng S (2019) Novel two-dimensional magnetic titanium carbide for methylene blue removal over a wide pH range: insight into removal performance and mechanism. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b04222

    Article  Google Scholar 

  31. Li Y, Yin X, Huang X, Tian J, Wu W, Liu X (2019) The novel and facile preparation of 2DMoS2@C composites for dye adsorption application. Appl Surf Sci 495:143626. https://doi.org/10.1016/j.apsusc.2019.143626

  32. Yuan YJ, Shen Z, Wu S, Su Y, Pei L, Ji Z, Ding M et al (2019) Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl Catal B: Environ 246:120–128. https://doi.org/10.1016/j.apcatb.2019.01.043

  33. Song HJ, You S, Jia XH, Yang J (2015) MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram Int. https://doi.org/10.1016/j.ceramint.2015.08.023

    Article  Google Scholar 

  34. Wang H, Wen F, Li X, Gan X, Yang Y, Chen P, Zhang Y (2016) Cerium-doped MoS2 nanostructures: efficient visible photocatalysis for Cr(VI) removal. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2016.06.049

    Article  Google Scholar 

  35. Wang W, Wen T, Bai H, Zhao Y, Ni J, Yang L, Xia L, Song S (2020) Adsorption toward Cu(II) and inhibitory effect on bacterial growth occurring on molybdenum disulfide-montmorillonite hydrogel surface. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126025

    Article  Google Scholar 

  36. Yuan W, Kuang J, Mingming Y, Huang Z, Zou Z, Zhu L (2020) Facile preparation of MoS2@Kaolin composite by one-step hydrothermal method for efficient removal of Pb(II). J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124261

    Article  Google Scholar 

  37. Wang C, Jin J, Sun Y, Yao J, Zhao G, Liu Y (2017) In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite. Chem Eng J. https://doi.org/10.1016/j.cej.2017.06.163

    Article  Google Scholar 

  38. Kim R, Kim J, Do JY, Seo MW, Kang M (2019) Carbon dioxide photoreduction on the Bi2S3/MoS2 catalyst. Catalysts. https://doi.org/10.3390/catal9120998

    Article  Google Scholar 

  39. Cai C, Wang R, Liu S, Yan X, Zhang L, Wang M, Tong Q, Jiao T (2020) Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities. Colloid Surf A: Phys Eng Aspects 589:124468. https://doi.org/10.1016/j.colsurfa.2020.124468

  40. Borges J, Mano JF (2021) Chemical reviews, and undefined 2014. Molecular interactions driving the layer-by-layer assembly of multilayers. ACS Publications. https://pubs.acs.org/doi/full/10.1021/cr400531v?casa_token=0k__Cfv_QAAAAAAA:IAor3sx6Xr2dzR3KUCzx55UYXxxD7SyYD_QgZCqPe_w8IWCORK-XxSARo3S-Cl7ZMPHhU4_pIw8i31TN. Accessed May 4

  41. Li K, Zou G, Jiao T, Xing R, Zhang L, Zhou J, Zhang Q, Peng Q (2018) Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2018.05.044

    Article  Google Scholar 

  42. Yang H, Cao R, Sun P, Yin J, Zhang S, Xu X (2019) Constructing electrostatic self-assembled 2D/2D ultra-thin ZnIn2S4/protonated g-C3N4 heterojunctions for excellent photocatalytic performance under visible light. Appl Catal B: Environ 256:117862. https://doi.org/10.1016/j.apcatb.2019.117862

  43. Yin J, Ge B, Jiao T, Qin Z, Yu M, Zhang L, Zhang Q, Peng Q (2021) Self-assembled sandwich-like MXene-derived composites as highly efficient and sustainable catalysts for wastewater treatment. Langmuir 37:1267–1278. https://doi.org/10.1021/acs.langmuir.0c03297

  44. Saxena V, Shukla I, Pandey LM (2019) Hydroxyapatite: an inorganic ceramic for biomedical applications. In: Mater Biomed Eng: Nanobiomat Tissue Eng 205–249. https://doi.org/10.1016/B978-0-12-816909-4.00008-7

  45. Chen J, Zheng H, Zhao Y, Que M, Wang W, Lei X (2020) Morphology and photocatalytic activity of TiO2/MXene composites by in-situ solvothermal method. Ceram Int 46:20088–20096. https://doi.org/10.1016/j.ceramint.2020.05.083

  46. Luo S, Wang R, Yin J, Jiao T, Chen K, Zou G, Zhang L, Zhou J, Zhang L, Peng Q (2019) Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega. https://doi.org/10.1021/acsomega.9b00231

    Article  Google Scholar 

  47. Yan J, Chen Z, Ji H, Liu Z, Wang X, Xu Y, She X et al (2016) Construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible-light photocatalytic activity and photoelectrochemical activity. Chem-A Eur J 22:4764–4773. https://doi.org/10.1002/chem.201503660

  48. Liu C, Chai B, Wang C, Yan J, Ren Z (2018) Solvothermal fabrication of MoS2 anchored on ZnIn2S4 microspheres with boosted photocatalytic hydrogen evolution activity. Int J Hydr Energy 43:6977–6986. https://doi.org/10.1016/j.ijhydene.2018.02.116

  49. Li M, Zhang Q, Ruan H, Wang X, Liu Y, Lu Z, Hai J (2019) An in-situ growth approach to 2D MoS2–2D PbS heterojunction composites with improved photocatalytic activity. J Solid State Chem 270:98–103. https://doi.org/10.1016/j.jssc.2018.11.008

  50. Gan D, Huang Q, Dou J, Huang H, Chen J, Liu M, Wen Y, Yang Z, Zhang X, Wei Y (2020) Bioinspired functionalization of MXenes (Ti3C2TX) with amino acids for efficient removal of heavy metal ions. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144603

    Article  Google Scholar 

  51. Tong S, Deng H, Wang L, Huang T, Liu S, Wang J (2018) Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions. Chem Eng J. https://doi.org/10.1016/j.cej.2017.10.056

    Article  Google Scholar 

  52. Dong Y, Sang D, He C, Sheng X, Lei L (2019) Mxene/alginate composites for lead and copper ion removal from aqueous solutions. RSC Adv. https://doi.org/10.1039/c9ra05251h

    Article  Google Scholar 

  53. Chandrabose G, Dey A, Singh Gaur S, Pitchaimuthu S, Jagadeesan H, St John Braithwaite N, Selvaraj V, Kumar V, Krishnamurthy S (2021) Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS2/TiO2 nanocomposite. Chemosphere 279:130467. https://doi.org/10.1016/j.chemosphere.2021.130467

  54. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. https://doi.org/10.1038/natrevmats.2016.98

    Article  Google Scholar 

  55. Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano. https://doi.org/10.1021/acsnano.9b06394

    Article  Google Scholar 

  56. Lei JC, Zhang X, Zhou Z (2015) Recent advances in MXene: preparation, properties, and applications. Front Phys. https://doi.org/10.1007/s11467-015-0493-x

    Article  Google Scholar 

  57. Sun W, Shah SA, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green MJ (2017) Electrochemical etching of Ti2AlC to Ti2CT: X (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A. https://doi.org/10.1039/c7ta05574a

    Article  Google Scholar 

  58. Shahzad A, Nawaz M, Moztahida M, Jang J, Tahir K, Kim J, Lim Y, Vassiliadis VS, Woo SH, Lee DS (2019) Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem Eng J. https://doi.org/10.1016/j.cej.2019.02.160

    Article  Google Scholar 

  59. 2D Metal Carbides and Nitrides (MXenes) (2019) 2D metal carbides and nitrides (MXenes). https://doi.org/10.1007/978-3-030-19026-2

  60. Szuplewska A, Kulpińska D, Dybko A, Chudy M, Jastrzębska AM, Olszyna A, Brzózka Z (2020) Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2019.09.001

    Article  Google Scholar 

  61. Huang Q, Liu Y, Cai T, Xia X (2019) Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite. J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2019.02.026

    Article  Google Scholar 

  62. Ren CE, Hatzell KB, Alhabeb M, Ling Z, Mahmoud KA, Gogotsi Y (2015) Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett. https://doi.org/10.1021/acs.jpclett.5b01895

    Article  Google Scholar 

  63. Chen B, Feng A, Deng R, Liu K, Yun Y, Song L (2020) MXene as a cation-selective cathode material for asymmetric capacitive deionization. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b19684

    Article  Google Scholar 

  64. Xie X, Chen C, Zhang N, Tang ZR, Jiang J, Yi Jun X (2019) Microstructure and surface control of MXene films for water purification. Nat Sustain. https://doi.org/10.1038/s41893-019-0373-4

    Article  Google Scholar 

  65. Peng Q, Guo J, Zhang Q, Xiang J, Liu B, Zhou A, Liu R, Tian Y (2014) Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc. https://doi.org/10.1021/ja500506k

    Article  Google Scholar 

  66. Zhu Z, Xiang M, Shan L, He T, Zhang P (2019) Effect of temperature on methylene blue removal with novel 2D-Magnetism titanium carbide. J Solid State Chem. https://doi.org/10.1016/j.jssc.2019.120989

    Article  Google Scholar 

  67. Feng X, Yu Z, Long R, Sun Y, Wang M, Li X, Zeng G (2020) Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Separ Purif Technol 247:116945. https://doi.org/10.1016/j.seppur.2020.116945

  68. Lei Y, Cui Y, Huang Q, Dou J, Gan D, Deng F, Liu M, Li X, Zhang X, Wei Y (2019) Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.05.331

    Article  Google Scholar 

  69. Li W, Chen D, Xia F, Tan JZY, Song J, Song WG, Caruso RA (2016) Flowerlike WSe2 and WS2 microspheres: one-pot synthesis, formation mechanism and application in heavy metal ion sequestration. Chem Commun. https://doi.org/10.1039/c6cc00577b

    Article  Google Scholar 

  70. Jia F, Wang Q, Jishan W, Li Y, Song S (2017) Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg2+ from water. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b01880

    Article  Google Scholar 

  71. Huang Q, Zhao J, Liu M, Li M, Ruan J, Li Q, Tian J, Zhu X, Zhang X, Wei Y (2018) Synthesis of polyacrylamide immobilized molybdenum disulfide (MoS2@PDA@PAM) composites via mussel-inspired chemistry and surface-initiated atom transfer radical polymerization for removal of copper (II) ions. J Taiwan Inst Chem Eng 86:174–184. https://doi.org/10.1016/j.jtice.2017.12.027

  72. Yang S, Hua M, Shen L, Han X, Meiyun X, Kuang L, Hua D (2018) Phosphonate and carboxylic acid co-functionalized MoS2 sheets for efficient sorption of uranium and europium: multiple groups for broad-spectrum adsorption. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2018.05.005

    Article  Google Scholar 

  73. Wang Z, Qingsong T, Sim A, Julie Y, Duan Y, Poon S, Liu B et al (2020) Superselective removal of lead from water by two-dimensional MoS2 nanosheets and layer-stacked membranes. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c02651

    Article  Google Scholar 

  74. Li Z, Meng X, Zhang Z (2019) Equilibrium and kinetic modelling of adsorption of Rhodamine B on MoS2. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2018.11.012

    Article  Google Scholar 

  75. Xiao X, Wang Y, Cui B, Zhang X, Zhang D, Xingyou X (2020) Preparation of MoS2 nanoflowers with rich active sites as an efficient adsorbent for aqueous organic dyes. New J Chem. https://doi.org/10.1039/d0nj00129e

    Article  Google Scholar 

  76. Li L, Yijun Y, Ye GJ, Ge Q, Xuedong O, Hua W, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol. https://doi.org/10.1038/nnano.2014.35

    Article  Google Scholar 

  77. Cortés-Arriagada D, Ortega DE (2020) Removal of arsenic from water using iron-doped phosphorene nanoadsorbents: a theoretical DFT study with solvent effects. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.112958

    Article  Google Scholar 

  78. Ortega DE, Cortés-Arriagada D (2020) Exploring the nature of interaction and stability between water-soluble arsenic pollutants and metal-phosphorene hybrids: a density functional theory study. J Phys Chem A. https://doi.org/10.1021/acs.jpca.0c00532

    Article  Google Scholar 

  79. Po CO, Lin YJ, Cao WZ, Chang CT (2017) Arsenic removal with phosphorene and adsorption in solution. Mater Lett. https://doi.org/10.1016/j.matlet.2017.01.030

    Article  Google Scholar 

  80. Wang J, Zhang Z, He D, Yang H, Jin D, Qu J, Zhang Y (2020) Comparative study on the adsorption capacities of the three black phosphorus-based materials for methylene blue in water. Sustainability 12:8335. https://doi.org/10.3390/SU12208335

  81. Wang Z, Zhang J, Wen T, Liu X, Wang Y, Yang H, Sun J, Feng J, Dong S, Sun J (2020) Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134341

    Article  Google Scholar 

  82. Jin L, Chai L, Yang W, Wang H, Zhang L (2020) Two-dimensional titanium carbides (Ti3C2Tx) functionalized by poly(m-phenylenediamine) for efficient adsorption and reduction of hexavalent chromium. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17010167

    Article  Google Scholar 

  83. Aghagoli M, Shemirani F (2017) Hybrid nanosheets composed of molybdenum disulfide and reduced graphene oxide for enhanced solid phase extraction of Pb(II) and Ni(II). Microchimica Acta

    Google Scholar 

  84. Ashraf W, Bansal S, Singh V, Barman S, Khanuja M (2020) BiOCl/WS2hybrid nanosheet (2D/2D) heterojunctions for visible-light-driven photocatalytic degradation of organic/inorganic water pollutants. RSC Adv. https://doi.org/10.1039/d0ra02916e

    Article  Google Scholar 

  85. Wang Q, Li B, Zhang P, Zhang W, Xiaoru H, Li X (2020) 2D black phosphorus and tungsten trioxide heterojunction for enhancing photocatalytic performance in visible light. RSC Adv. https://doi.org/10.1039/d0ra05230b

    Article  Google Scholar 

  86. Farbod M, Taheri R, Kosarian A (2020) Preparation, characterization and photocatalytic performance of phosphorene/MoS2 as a 2D hybrid semiconductor. Mater Sci Semicond Proces Pergamon. https://doi.org/10.1016/j.mssp.2020.105562

    Article  Google Scholar 

  87. Li S, Wang P, Wang R, Liu Y, Jing R, Li Z, Meng Z, Liu Y, Zhang Q (2019) One-step co-precipitation method to construct black phosphorus nanosheets/ZnO nanohybrid for enhanced visible light photocatalytic activity. Appl Surf Sci 497:143682. https://doi.org/10.1016/j.apsusc.2019.143682

    Article  CAS  Google Scholar 

  88. Kemp KC, Seema H, Saleh M, Le NH, Mahesh K, Chandra V, Kim KS (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale. https://doi.org/10.1039/c3nr33708a

    Article  Google Scholar 

  89. Liu F, Liu X, Sun L, Li R-X, Yin C, Wu B (2021) MXene-supported stable adsorbents for superior CO2 capture. J Mater Chem A. https://doi.org/10.1039/D1TA01403J

  90. Morales-García Á, Fernández-Fernández A, Viñes F, Illas F (2018) CO2 abatement using two-dimensional MXene carbides. J Mater Chem A. https://doi.org/10.1039/c7ta11379j

    Article  Google Scholar 

  91. Morales-Salvador R, Morales-García Á, Viñes F, Illas F (2018) Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation. Phys Chem Chem Phys. https://doi.org/10.1039/c8cp02746c

    Article  Google Scholar 

  92. Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S (2017) Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C. https://doi.org/10.1039/c7tc00140a

    Article  Google Scholar 

  93. Junkaew A, Arróyave R (2018) Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas-sensing and -separation. Phys Chem Chem Phys. https://doi.org/10.1039/c7cp08622a

  94. Naqvi SR, Shukla V, Jena NK, Luo W, Ahuja R (2020) Exploring two-dimensional M2NS2 (M = Ti, V) MXenes based gas sensors for air pollutants. Appl Mater Today. https://doi.org/10.1016/j.apmt.2020.100574

  95. Ma D, Weiwei J, Li T, Zhang X, He C, Ma B, Zhansheng L, Yang Z (2016) The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2016.04.171

    Article  Google Scholar 

  96. Lu X, Guo L, Wang P, Cui M, Kanghong D, Peng W (2020) Theoretical investigation of the adsorption of gas molecules on WSe2 monolayers decorated with Pt, Au nanoclusters. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.145860

  97. Li Z, He J, Wang H, Wang B, Ma X (2015) Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3. Front Chem Sci Eng. https://doi.org/10.1007/s11705-014-1446-6

    Article  Google Scholar 

  98. Almeida K, Peña P, Rawal TB, Coley WC, Akhavi AA, Wurch M, Yamaguchi K, Le D, Rahman TS, Bartels L (2019) A single layer of MoS2 activates gold for room temperature CO oxidation on an inert silica substrate. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b12325

    Article  Google Scholar 

  99. Cui H, Zhang G, Zhang X, Tang J (2019) Rh-doped MoSe2 as a toxic gas scavenger: a first-principles study. Nanoscale Adv. https://doi.org/10.1039/c8na00233a

    Article  Google Scholar 

  100. Shi G, Luo Y, Ba X, Zhang X, Zhou J, Ying Y (2017) Copper nanoparticle interspersed MoS2 nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel. Dalton Trans. https://doi.org/10.1039/c6dt04381j

    Article  Google Scholar 

  101. Abbasi A, Sardroodi JJ (2017) A novel strategy for SOx removal by N-doped TiO2/WSe2 nanocomposite as a highly efficient molecule sensor investigated by van der Waals corrected DFT. Comput Theor Chem. https://doi.org/10.1016/j.comptc.2017.05.020

    Article  Google Scholar 

  102. Wen MQ, Xiong T, Zang ZG, Wei W, Tang XS, Dong F (2016) Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Opt Express. https://doi.org/10.1364/oe.24.010205

    Article  Google Scholar 

  103. Sun Q, Qin G, Ma Y, Wang W, Li P, Aijun D, Li Z (2017) Electric field controlled CO2 capture and CO2/N2 separation on MoS2 monolayers. Nanoscale. https://doi.org/10.1039/c6nr07001a

    Article  Google Scholar 

  104. Abbasi A, Sardroodi JJ (2019) Adsorption of O3, SO2 and SO3 gas molecules on MoS2 monolayers: a computational investigation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.11.039

    Article  Google Scholar 

  105. Wei H, Gui Y, Kang J, Wang W, Tang C (2018) A DFT study on the adsorption of H2S and So2 on Ni doped MoS2 monolayer. Nanomaterials. https://doi.org/10.3390/nano8090646

    Article  Google Scholar 

  106. Ma S, Liancun S, Jin L, Jinsheng S, Jin Y (2019) A first-principles insight into Pd-doped MoSe2 monolayer: a toxic gas scavenger. Phys Lett Sect A: Gener Atom Solid State Phys. https://doi.org/10.1016/j.physleta.2019.125868

    Article  Google Scholar 

  107. Ni J, Wang W, Quintana M, Jia F, Song S (2020) Adsorption of small gas molecules on strained monolayer WSe2 doped with Pd, Ag, Au, and Pt: a computational investigation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.145911

    Article  Google Scholar 

  108. Cai Y, Ke Q, Zhang G, Zhang YW (2015) Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J Phys Chem C. https://doi.org/10.1021/jp510863p

    Article  Google Scholar 

  109. Kuang A, Ran Y, Peng B, Kuang M, Wang G, Yuan H, Tian C, Chen H (2019) Adsorption and decomposition of metal decorated phosphorene toward H2S, HCN and NH3 molecules. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.12.131

    Article  Google Scholar 

  110. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2020) Toxicants in cigarette smoke adsorbed on red phosphorene nanosheet: a first-principles insight. Chem Phys. https://doi.org/10.1016/j.chemphys.2019.110604

    Article  Google Scholar 

  111. Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B et al (2018) Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano. https://doi.org/10.1021/acsnano.7b07460

    Article  Google Scholar 

  112. Shuvo SN, Gomez AMU, Mishra A, Chen WY, Dongare AM, Stanciu LA (2020) Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sensors. https://doi.org/10.1021/acssensors.0c01287

    Article  Google Scholar 

  113. Chen WY, Yen CC, Xue S, Wang H, Stanciu LA (2019) Surface functionalization of layered molybdenum disulfide for the selective detection of volatile organic compounds at room temperature. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b13827

    Article  Google Scholar 

  114. Lazar P, Otyepková E, Pykal M, Čépe K, Otyepka M (2018) Role of the puckered anisotropic surface in the surface and adsorption properties of black phosphorus. Nanoscale. https://doi.org/10.1039/c8nr00329g

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Tanweer S. M. is thankful to the University Grants Commission (UGC) for the Non-NET Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Saquib Tanweer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanweer, M.S., Chauhan, H., Alam, M. (2022). Advanced 2D Nanomaterial Composites: Applications in Adsorption of Water Pollutants and Toxic Gases. In: Khanam, Z., Gogoi, N., Srivastava, D.N. (eds) 2D Nanomaterials for Energy and Environmental Sustainability. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-8538-5_5

Download citation

Publish with us

Policies and ethics