Skip to main content

Neuro-Gerontechnologies: Applications and Opportunities

Part of the Studies in Computational Intelligence book series (SCI,volume 1011)

Abstract

A positive aging requires placing human changes due to healthy or pathological senescence at the center of gerontechnology design. A set of key solutions for accomplishing this goal is offered by neurotechnologies. These systems can monitor and interpret data related to the central and peripheral nervous systems for understanding the individual conditions, enabling the control and the adaptation of assistive and rehabilitative devices, influencing the nervous system itself and empowering mental processes. Focusing on non-invasive approaches (closer to real-world applications), this chapter describes how adopting these solutions can improve the daily life of seniors and help the translational study of the aging brain in real settings through approaches like the one of neuroergonomics. This manuscript also highlights the potential of neuro-gerontechnologies within emerging frameworks that could enable digital biomarker-based assessment and personalization features. In particular, pervasive solutions of Internet of Things and Minds (IoTM) can make everyday devices truly human-centered (and, in this case, senior-centered). Indeed, a network of systems interpreting a person’s will and needs defines a step-change to properly serve human beings according to their fragilities.

Keywords

  • Neurotechnology
  • Gerontechnology
  • Human-Centered Design
  • Personalization
  • Internet of Things
  • Digital Health

Marianna Semprini and Lorenzo De Michieli equally contributed to this work.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8488-3_7
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8488-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    https://www.ft.com/content/9792bb60-b794-11e9-8a88-aa6628ac896c

  2. 2.

    https://choosemuse.com/

  3. 3.

    https://openbci.com/

  4. 4.

    https://www.emotiv.com/

  5. 5.

    https://www.gtec.at/product/gnautilus-pro/

  6. 6.

    https://www.unicorn-bi.com/

References

  1. Hof, P.R., Mobbs, C.V.: Handbook of the Neuroscience of Aging. Academic Press (2010)

    Google Scholar 

  2. Kalra, S., Sharma, S.K.: Diabetes in the elderly. Diab. Ther. 9(2), 493–500 (2018)

    CrossRef  Google Scholar 

  3. Arvanitakis, Z., Shah, R.C., Bennett, D.A.: Diagnosis and management of dementia. JAMA 322(16), 1589–1599 (2019)

    CrossRef  Google Scholar 

  4. Lee, J.E., Shin, D.W., Han, K., Kim, D., Yoo, J.E., Lee, J., Kim, S., Son, K.Y., Cho, B., Kim, M.J.: Changes in metabolic syndrome status and risk of dementia. J. Clin. Med. 9(1), 122 (2020)

    CrossRef  Google Scholar 

  5. Burdick, D.C., Kwon, S.: Gerotechnology: Research and Practice in Technology and Aging. Springer Publishing Company (2004)

    Google Scholar 

  6. Graafmans, J., Fozard, J., Rietsema, J., Van Berlo, A., Bouma, H.: Gerontechnology: matching the technological environment to the needs and capacities of the elderly. Aging Hum. Factors 19–30 (1996)

    Google Scholar 

  7. Vázquez-Guardado, A., Yang, Y., Bandodkar, A.J., Rogers, J.A.: Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23(12), 1522–1536 (2020)

    CrossRef  Google Scholar 

  8. Fairclough, S.H., Lotte, F.: Grand challenges in neurotechnology and system neuroergonomics. Front. Neuroergonomics 1, 2 (2020)

    CrossRef  Google Scholar 

  9. Rajput, R., Kaur, R., Chadha, R., Mani, S, Rachana, R., Kaur, H., Singh, M.: The aging brain: from physiology to neurodegeneration. In: Handbook of Research on Critical Examinations of Neurodegenerative Disorders, pp. 1–23. IGI Global (2019)

    Google Scholar 

  10. Huseyn, E.: Examining neurological and neurodegenerative disorders related to aging and elderly. Int. Trends Sci. Technol. 27 (2021)

    Google Scholar 

  11. Lo, R.Y.: The borderland between normal aging and dementia. Tzu-Chi Med. J. 29(2), 65 (2017)

    Google Scholar 

  12. Howard, J.H., Jr., Howard, D.V.: Aging mind and brain: is implicit learning spared in healthy aging? Front. Psychol. 4, 817 (2013)

    CrossRef  Google Scholar 

  13. MacNee, W., Rabinovich, R.A., Choudhury, G.: Ageing and the border between health and disease. Eur. Respir. J. 44(5), 1332–1352 (2014)

    CrossRef  Google Scholar 

  14. Crews, J.E., Campbell, V.A.: Vision impairment and hearing loss among community-dwelling older Americans: implications for health and functioning. Am. J. Public Health 94(5), 823–829 (2004)

    CrossRef  Google Scholar 

  15. Seidler, R.D., Bernard, J.A., Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J.T., Kwak, Y., Lipps, D.B.: Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 34(5), 721–733 (2010)

    CrossRef  Google Scholar 

  16. Votruba, K.L., Persad, C., Giordani, B.: Cognitive deficits in healthy elderly population with “normal” scores on the Mini-Mental State Examination. J. Geriatr. Psychiatry Neurol. 29(3), 126–132 (2016)

    CrossRef  Google Scholar 

  17. Lipsitz, L.A., Novak, V.: Aging and the autonomic nervous system. In: Primer on the Autonomic Nervous System, pp. 271–273. Elsevier (2012)

    Google Scholar 

  18. Chen, R.-L., Balami, J.S., Esiri, M.M., Chen, L.-K., Buchan, A.M.: Ischemic stroke in the elderly: an overview of evidence. Nat. Rev. Neurol. 6(5), 256–265 (2010)

    CrossRef  Google Scholar 

  19. Knopman, D.S., Petersen, R.C.: Mild cognitive impairment and mild dementia: a clinical perspective. Mayo Clin. Proc. 10, 1452–1459 (2014)

    Google Scholar 

  20. Kaszniak, A.W., Christenson, G.D.: Differential diagnosis of dementia and depression. In: Neuropsychological Assessment of Dementia and Depression in Older Adults: A Clinician’s Guide, pp. 81–117 (1994)

    Google Scholar 

  21. Logroscino, G., Traynor, B., Hardiman, O., Couratier, P., Mitchell, J., Swingler, R., Beghi, E.: Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. J. Neurol. Neurosurg. Psychiatry 79(1), 6–11 (2008)

    CrossRef  Google Scholar 

  22. Broussalis, E., Grinzinger, S., Kunz, A., Killer-Oberpfalzer, M., Haschke-Becher, E., Hartung, H.P., Kraus, J.: Late age onset of amyotrophic lateral sclerosis is often not considered in elderly people. Acta Neurol. Scand. 137(3), 329–334 (2018)

    CrossRef  Google Scholar 

  23. Mrak, R.E., Griffin, W.S.T., Graham, D.I.: Aging-associated changes in human brain. J. Neuropathol. Exp. Neurol. 56(12), 1269–1275 (1997)

    CrossRef  Google Scholar 

  24. Lis, C., Gaviria, M.: Vascular dementia, hypertension, and the brain. Neurol. Res. 19(5), 471–480 (1997)

    CrossRef  Google Scholar 

  25. Penninx, B.W., Beekman, A.T., Ormel, J., Kriegsman, D.M., Boeke, A.J.P., Van Eijk, J.T.M., Deeg, D.J.: Psychological status among elderly people with chronic diseases: does type of disease play a part? J. Psychosom. Res. 40(5), 521–534 (1996)

    CrossRef  Google Scholar 

  26. Ambrose, A.F., Paul, G., Hausdorff, J.M.: Risk factors for falls among older adults: a review of the literature. Maturitas 75(1), 51–61 (2013)

    CrossRef  Google Scholar 

  27. Lipsitz, L.A., Manor, B., Habtemariam, D., Iloputaife, I., Zhou, J., Travison, T.G.: The pace and prognosis of peripheral sensory loss in advanced age: association with gait speed and falls. BMC Geriatr. 18(1), 1–8 (2018)

    CrossRef  Google Scholar 

  28. Chau, R.M., Ng, T.K., Kwan, R.L., Choi, C.-H., Cheing, G.L.: Risk of fall for people with diabetes. Disabil. Rehabil. 35(23), 1975–1980 (2013)

    CrossRef  Google Scholar 

  29. Kirkland, J.L.: Translating advances from the basic biology of aging into clinical application. Exp. Gerontol. 48(1), 1–5 (2013)

    CrossRef  MathSciNet  Google Scholar 

  30. Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., May, A.: Training-induced brain structure changes in the elderly. J. Neurosci. 28(28), 7031–7035 (2008)

    CrossRef  Google Scholar 

  31. Kattenstroth, J.-C., Kolankowska, I., Kalisch, T., Dinse, H.R.: Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities. Front. Aging Neurosci. 2, 31 (2010)

    Google Scholar 

  32. Maier, M., Ballester, B.R., Verschure, P.F.: Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front. Syst. Neurosci. 13, 74 (2019)

    CrossRef  Google Scholar 

  33. Tardif, S., Simard, M.: Cognitive stimulation programs in healthy elderly: a review. Int. J. Alzheimer’s Dis. (2011)

    Google Scholar 

  34. Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L., Winblad, B.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001)

    CrossRef  Google Scholar 

  35. Piccini, L., Parini, S., Maggi, L., Andreoni, G.A.: wearable home BCI system: preliminary results with SSVEP protocol. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 5384–5387. IEEE (2006)

    Google Scholar 

  36. Doi, T., Makizako, H., Shimada, H., Park, H., Tsutsumimoto, K., Uemura, K., Suzuki, T.: Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study. Aging Clin. Exp. Res. 25 (5), 539–544 (2013)

    Google Scholar 

  37. Huang, C., Wahlund, L.-O., Dierks, T., Julin, P., Winblad, B., Jelic, V.: Discrimination of Alzheimer’s disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clin. Neurophysiol. 111(11), 1961–1967 (2000)

    CrossRef  Google Scholar 

  38. Yang, D., Hong, K.-S., Yoo, S.-H., Kim, C.-S.: Evaluation of neural degeneration biomarkers in the prefrontal cortex for early identification of patients with mild cognitive impairment: an fNIRS study. Front. Hum. Neurosci. 13, 317 (2019)

    CrossRef  Google Scholar 

  39. Zamrini, E., Maestu, F., Pekkonen, E., Funke, M., Makela, J., Riley, M., Bajo, R., Sudre, G., Fernandez, A., Castellanos, N.: Magnetoencephalography as a putative biomarker for Alzheimer's disease. Int. J. Alzheimer’s Dis. (2011)

    Google Scholar 

  40. Larradet, F., Niewiadomski, R., Barresi, G., Caldwell, D.G., Mattos, L.S.: Toward emotion recognition from physiological signals in the wild: approaching the methodological issues in real-life data collection. Front. Psychol. 11, 1111 (2020)

    CrossRef  Google Scholar 

  41. Raj, A., Roberts, B., Hollingshead, K., McDonald, N., Poquette, M., Soussou, W.A.: Wearable multisensory, multiagent approach for detection and mitigation of acute cognitive strain. In: International Conference on Augmented Cognition, pp. 180–200. Springer (2018)

    Google Scholar 

  42. Allanson, J., Fairclough, S.H.: A research agenda for physiological computing. Interact. Comput. 16(5), 857–878 (2004)

    CrossRef  Google Scholar 

  43. Maranesi, E., Fioretti, S., Ghetti, G., Rabini, R., Burattini, L., Mercante, O., Di Nardo, F.: The surface electromyographic evaluation of the functional reach in elderly subjects. J. Electromyogr. Kinesiol. 26, 102–110 (2016)

    CrossRef  Google Scholar 

  44. Shustak, S., Inzelberg, L., Steinberg, S., Rand, D., Pur, M.D., Hillel, I., Katzav, S., Fahoum, F., De Vos, M., Mirelman, A.: Home monitoring of sleep with a temporary-tattoo EEG, EOG and EMG electrode array: a feasibility study. J. Neural Eng. 16(2), 026024 (2019)

    Google Scholar 

  45. Das, D., Datta, S., Bhattacharjee, T., Choudhury, A.D., Pal, A.: Eliminating individual bias to improve stress detection from multimodal physiological data. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5753–5758. IEEE (2018)

    Google Scholar 

  46. Johannessen, E.: Measuring Cognitive Load in a Clinical Setting: Medical Learning and Practice. Queen’s University, Canada (2019)

    Google Scholar 

  47. Papetti, A., Iualé, M., Ceccacci, S., Bevilacqua, R., Germani, M., Mengoni, M.: Smart objects: an evaluation of the present state based on user needs. In: International Conference on Distributed, Ambient, and Pervasive Interactions, pp. 359–368. Springer (2014)

    CrossRef  Google Scholar 

  48. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)

    CrossRef  Google Scholar 

  49. Chaudhary, P., Agrawal, R.: Brain computer interface: a new pathway to human brain. In: Cognitive Computing in Human Cognition, pp. 99–125. Springer (2020)

    Google Scholar 

  50. Saha, S., Mamun, K.A., Ahmed, K., Mostafa, R., Naik, G.R., Darvishi, S., Khandoker, A.H., Baumert, M.: Progress in brain computer interface: challenges and opportunities. Front. Syst. Neurosci. 15(4) (2021). https://doi.org/10.3389/fnsys.2021.578875

  51. Chan, A.T., Quiroz, J.C., Dascalu, S., Harris, F.C.: An overview of brain computer interfaces. In: Proceedings of the 30th International Conference on Computers and Their Applications (2015)

    Google Scholar 

  52. Zhuang, M., Wu, Q., Wan, F., Hu, Y.: State-of-the-art non-invasive brain–computer interface for neural rehabilitation: a review. J. Neurorestoratology 8(1), 4 (2020)

    CrossRef  Google Scholar 

  53. Nagel, S., Spüler, M.: World’s fastest brain-computer interface: combining EEG2Code with deep learning. PloS One 14(9), e0221909 (2019)

    Google Scholar 

  54. Garg, N., Garg, R., Parrivesh, N., Anand, A., Abhinav, V., Baths, V.: Decoding the neural signatures of valence and arousal from portable EEG headset. bioRxiv (2021)

    Google Scholar 

  55. Fukuma, R., Yanagisawa, T., Saitoh, Y., Hosomi, K., Kishima, H., Shimizu, T., Sugata, H., Yokoi, H., Hirata, M., Kamitani, Y.: Real-time control of a neuroprosthetic hand by magnetoencephalographic signals from paralysed patients. Sci. Rep. 6(1), 1–14 (2016)

    Google Scholar 

  56. Kaas, A., Goebel, R., Valente, G., Sorger, B.: Topographic somatosensory imagery for real-time fMRI brain-computer interfacing. Front. Hum. Neurosci. 13, 427 (2019)

    CrossRef  Google Scholar 

  57. Khalaf, A., Sejdic, E., Akcakaya, M.: A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound. J. Neurosci. Methods 313, 44–53 (2019)

    CrossRef  Google Scholar 

  58. Wyser, D.G., Lambercy, O., Scholkmann, F., Wolf, M., Gassert, R.: Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths. Neurophotonics 4(4), 041413 (2017)

    Google Scholar 

  59. Yaqub, M.A., Woo, S.-W., Hong, K.-S.: Compact, portable, high-density functional near-infrared spectroscopy system for brain imaging. IEEE Access 8, 128224–128238 (2020)

    CrossRef  Google Scholar 

  60. Herweg, A., Gutzeit, J., Kleih, S., Kübler, A.: Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol. Psychol. 121, 117–124 (2016)

    CrossRef  Google Scholar 

  61. Villa-Parra, A., Delisle-Rodríguez, D., López-Delis, A., Bastos-Filho, T., Sagaró, R., Frizera-Neto, A.: Towards a robotic knee exoskeleton control based on human motion intention through EEG and sEMGsignals. Procedia Manufact. 3, 1379–1386 (2015)

    CrossRef  Google Scholar 

  62. Chai, X., Zhang, Z., Guan, K., Lu, Y., Liu, G., Zhang, T., Niu, H.: A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomed. Signal Process. Control 56, 101687 (2020)

    Google Scholar 

  63. Pfurtscheller, G., Allison, B.Z., Bauernfeind, G., Brunner, C., Solis Escalante, T., Scherer, R., Zander, T.O., Mueller-Putz, G., Neuper, C., Birbaumer, N.: The hybrid BCI. Front. Neurosci. 4, 3 (2010)

    Google Scholar 

  64. Yousefi, R., Sereshkeh, A.R., Chau, T.: Exploiting error-related potentials in cognitive task based BCI. Biomed. Phys. Eng. Express 5(1), 015023 (2018)

    Google Scholar 

  65. Schiatti, L., Barresi, G., Tessadori, J., King, L.C., Mattos, L.S.: The effect of vibrotactile feedback on ErrP-based adaptive classification of motor imagery. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6750–6753. IEEE (2019)

    Google Scholar 

  66. Pasqualotto, E., Matuz, T., Federici, S., Ruf, C.A., Bartl, M., Olivetti Belardinelli, M., Birbaumer, N., Halder, S.: Usability and workload of access technology for people with severe motor impairment: a comparison of brain-computer interfacing and eye tracking. Neurorehabil. Neural Repair 29(10), 950–957 (2015)

    CrossRef  Google Scholar 

  67. Barresi, G., Tessadori, J., Schiatti, L., Mazzanti, D., Caldwell, D.G., Mattos, L.S.: Focus-sensitive dwell time in EyeBCI: pilot study. In: 2016 8th Computer Science and Electronic Engineering (CEEC), pp. 54–59. IEEE (2016)

    Google Scholar 

  68. Müller-Putz, G.R., Breitwieser, C., Cincotti, F., Leeb, R., Schreuder, M., Leotta, F., Tavella, M., Bianchi, L., Kreilinger, A., Ramsay, A.: Tools for brain-computer interaction: a general concept for a hybrid BCI. Front. Neuroinform. 5, 30 (2011)

    CrossRef  Google Scholar 

  69. Misbhauddin, M.: Smartwatch-based wearable and usable system for driver drowsiness detection. In: The Proceedings of the Third International Conference on Smart City Applications, pp. 906–920. Springer (2019)

    Google Scholar 

  70. Aricò, P., Borghini, G., Di Flumeri, G., Sciaraffa, N., Babiloni, F.: Passive BCI beyond the lab: current trends and future directions. Physiol. Meas. 39(8), 08TR02 (2018)

    Google Scholar 

  71. Larradet, F., Barresi, G., Mattos, L.S.: Effects of galvanic skin response feedback on user experience in gaze-controlled gaming: a pilot study. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2458–2461. IEEE (2017)

    Google Scholar 

  72. Parsons, T.D., Gaggioli, A., Riva, G.: Extended reality for the clinical, affective, and social neurosciences. Brain Sci. 10(12), 922 (2020)

    CrossRef  Google Scholar 

  73. Georgiev, D.D., Georgieva, I., Gong, Z., Nanjappan, V., Georgiev, G.V.: Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sci. 11(2), 221 (2021)

    CrossRef  Google Scholar 

  74. Sokolov, A.A., Collignon, A., Bieler-Aeschlimann, M.: Serious video games and virtual reality for prevention and neurorehabilitation of cognitive decline because of aging and neurodegeneration. Curr. Opin. Neurol. 33(2), 239–248 (2020)

    CrossRef  Google Scholar 

  75. Baran, M., Lehrer, N., Duff, M., Venkataraman, V., Turaga, P., Ingalls, T., Rymer, W.Z., Wolf, S.L., Rikakis, T.: Interdisciplinary concepts for design and implementation of mixed reality interactive neurorehabilitation systems for stroke. Phys. Ther. 95(3), 449–460 (2015)

    CrossRef  Google Scholar 

  76. Iandolo, R., Marini, F., Semprini, M., Laffranchi, M., Mugnosso, M., Cherif, A., De Michieli, L., Chiappalone, M., Zenzeri, J.: Perspectives and challenges in robotic neurorehabilitation. Appl. Sci. 9(15), 3183 (2019)

    CrossRef  Google Scholar 

  77. Wenk, N., Buetler, K.A., Marchal-Crespo, L.: Virtual reality in robotic neurorehabilitation. In: Virtual Reality in Health and Rehabilitation, pp. 41–60. CRC Press (2020)

    Google Scholar 

  78. Casey, A., Azhar, H., Grzes, M., Sakel, M.: BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients. Disabil. Rehabil. Assist. Technol. 16(5), 525–537 (2021)

    CrossRef  Google Scholar 

  79. Guggenberger, R., Heringhaus, M., Gharabaghi, A.: Brain-machine neurofeedback: robotics or electrical stimulation? Front. Bioeng. Biotechnol. 8, 639 (2020)

    CrossRef  Google Scholar 

  80. Naro, A., Billeri, L., Manuli, A., Balletta, T., Cannavò, A., Portaro, S., Lauria, P., Ciappina, F., Calabrò, R.S.: Breaking the ice to improve motor outcomes in patients with chronic stroke: a retrospective clinical study on neuromodulation plus robotics. Neurol. Sci. 1–9 (2020)

    Google Scholar 

  81. Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., McKenna-Cole, A., Schmit, B.D., Rymer, W.Z.: Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J. Rehabil. Res. Dev. 37(6), 653–662 (2014)

    Google Scholar 

  82. Calabrò, R.S., Russo, M., Naro, A., Milardi, D., Balletta, T., Leo, A., Filoni, S., Bramanti, P.: Who may benefit from armeo power treatment? A neurophysiological approach to predict neurorehabilitation outcomes. PM&R 8(10), 971–978 (2016)

    CrossRef  Google Scholar 

  83. Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)

    CrossRef  Google Scholar 

  84. Reinkensmeyer, D.J., Wolbrecht, E.T., Chan, V., Chou, C., Cramer, S.C., Bobrow, J.E.: Comparison of 3D, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional table top therapy following chronic stroke. Am. J. Phys. Med. Rehabil./Assoc. Acad. Physiatrists 91(11 0 3), S232 (2012)

    Google Scholar 

  85. Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M.: Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation: Technol. Neural Interface 6(2), 108–115 (2003)

    Google Scholar 

  86. Kolakowsky-Hayner, S.A., Crew, J., Moran, S., Shah, A.: Safety and feasibility of using the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury. J Spine 4(003), 1–8 (2013)

    Google Scholar 

  87. Vassallo, C., De Giuseppe, S., Piezzo, C., Maludrottu, S., Cerruti, G., D’Angelo, M.L., Gruppioni, E., Marchese, C., Castellano, S., Guanziroli, E.: Gait patterns generation based on basis functions interpolation for the TWIN lower-limb exoskeleton. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1778–1784. IEEE (2020)

    Google Scholar 

  88. Krebs, H.I., Ferraro, M., Buerger, S.P., Newbery, M.J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B.T., Hogan, N.: Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J. Neuroeng. Rehabil. 1(1), 1–15 (2004)

    CrossRef  Google Scholar 

  89. Casadio, M., Sanguineti, V., Morasso, P.G., Arrichiello, V.: Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol. Health Care 14(3), 123–142 (2006)

    CrossRef  Google Scholar 

  90. Masia, L., Casadio, M., Giannoni, P., Sandini, G., Morasso, P.: Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study. J. Neuroeng. Rehabil. 6(1), 1–11 (2009)

    CrossRef  Google Scholar 

  91. Schmidt, H., Hesse, S., Bernhardt, R., Krüger, J.: HapticWalker–-a novel haptic foot device. ACM Trans. Appl. Percept. (TAP) 2(2), 166–180 (2005)

    CrossRef  Google Scholar 

  92. Hesse, S., Waldner, A., Tomelleri, C.: Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 7(1), 1–10 (2010)

    CrossRef  Google Scholar 

  93. Squeri, V., De Luca, A., Cella, A., Vallone, F., Siri, G., Zigoura, E., Giorgeschi, A., Tavella, E., Puntoni, M., Avella, M.: Robotic evaluation of fall risk in older people: results on trunk parameters in static and dynamic balance conditions by hunova robot. Ann. Phys. Rehabil. Med. 61, e339 (2018)

    Google Scholar 

  94. D’Antonio, E., Galofaro, E., Zenzeri, J., Patané, F., Konczak, J., Casadio, M., Masia, L.: Robotic assessment of wrist proprioception during kinaesthetic perturbations: a neuroergonomic approach. Front. Neurorobot. 15, 19 (2021)

    CrossRef  Google Scholar 

  95. Maggioni, S., Melendez-Calderon, A., Van Asseldonk, E., Klamroth-Marganska, V., Lünenburger, L., Riener, R., Van Der Kooij, H.: Robot-aided assessment of lower extremity functions: a review. J. Neuroeng. Rehabil. 13(1), 1–25 (2016)

    CrossRef  Google Scholar 

  96. Debert, C.T., Herter, T.M., Scott, S.H., Dukelow, S.: Robotic assessment of sensorimotor deficits after traumatic brain injury. J. Neurol. Phys. Ther. 36(2), 58–67 (2012)

    CrossRef  Google Scholar 

  97. Marchal-Crespo, L., Reinkensmeyer, D.J.: Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6(1), 1–15 (2009)

    CrossRef  Google Scholar 

  98. Iwamoto, Y., Imura, T., Suzukawa, T., Fukuyama, H., Ishii, T., Taki, S., Imada, N., Shibukawa, M., Inagawa, T., Araki, H.: Combination of exoskeletal upper limb robot and occupational therapy improve activities of daily living function in acute stroke patients. J. Stroke Cerebrovasc. Dis. 28(7), 2018–2025 (2019)

    CrossRef  Google Scholar 

  99. Dehem, S., Gilliaux, M., Stoquart, G., Detrembleur, C., Jacquemin, G., Palumbo, S., Frederick, A., Lejeune, T.: Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: a single-blind, randomised, controlled trial. Ann. Phys. Rehabil. Med. 62(5), 313–320 (2019)

    CrossRef  Google Scholar 

  100. Kim, M.-S., Kim, S.H., Noh, S.-E., Bang, H.J., Lee, K.-M.: Robotic-assisted shoulder rehabilitation therapy effectively improved poststroke hemiplegic shoulder pain: a randomized controlled trial. Arch. Phys. Med. Rehabil. 100(6), 1015–1022 (2019)

    CrossRef  Google Scholar 

  101. Aprile, I., Germanotta, M., Cruciani, A., Loreti, S., Pecchioli, C., Cecchi, F., Montesano, A., Galeri, S., Diverio, M., Falsini, C.: Upper limb robotic rehabilitation after stroke: a multicenter, randomized clinical trial. J. Neurol. Phys. Ther. 44(1), 3–14 (2020)

    CrossRef  Google Scholar 

  102. Maranesi, E., Riccardi, G.R., Di Donna, V., Di Rosa, M., Fabbietti, P., Luzi, R., Pranno, L., Lattanzio, F., Bevilacqua, R.: Effectiveness of intervention based on end-effector gait trainer in older patients with stroke: a systematic review. J. Am. Med. Dir. Assoc. 21(8), 1036–1044 (2020)

    CrossRef  Google Scholar 

  103. Berger, A., Horst, F., Müller, S., Steinberg, F., Doppelmayr, M.: Current state and future prospects of EEG and fNIRS in robot-assisted gait rehabilitation: a brief review. Front. Hum. Neurosci. 13, 172 (2019)

    CrossRef  Google Scholar 

  104. Frank, D.L., Khorshid, L., Kiffer, J.F., Moravec, C.S., McKee, M.G.: Biofeedback in medicine: who, when, why and how? Ment. Health Fam. Med. 7(2), 85 (2010)

    Google Scholar 

  105. Karatsidis, A., Richards, R.E., Konrath, J.M., Van Den Noort, J.C., Schepers, H.M., Bellusci, G., Harlaar, J., Veltink, P.H.: Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset. J. Neuroeng. Rehabil. 15(1), 1–12 (2018)

    CrossRef  Google Scholar 

  106. de Zambotti, M., Sizintsev, M., Claudatos, S., Barresi, G., Colrain, I.M., Baker, F.C.: Reducing bedtime physiological arousal levels using immersive audio-visual respiratory bio-feedback: a pilot study in women with insomnia symptoms. J. Behav. Med. 42(5), 973–983 (2019)

    CrossRef  Google Scholar 

  107. Garbarino, M., Lai, M., Bender, D., Picard, R.W., Tognetti, S.: Empatica E3—a wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In: 2014 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), pp. 39–42. IEEE (2014)

    Google Scholar 

  108. Pereira, O., Caldeira, J.M., Rodrigues, J.J.: Body sensor network mobile solutions for biofeedback monitoring. Mob. Netw. Appl. 16(6), 713–732 (2011)

    CrossRef  Google Scholar 

  109. Park, J., Park, C.H., Jun, S.-E., Lee, E.-J., Kang, S.W., Kim, N.: Effects of biofeedback-based sleep improvement program on urinary symptoms and sleep patterns of elderly Korean women with overactive bladder syndrome. BMC Urol. 19(1), 1–10 (2019)

    CrossRef  Google Scholar 

  110. Afzal, M.R., Oh, M.-K., Choi, H.Y., Yoon, J.: A novel balance training system using multimodal biofeedback. Biomed. Eng. Online 15(1), 1–11 (2016)

    CrossRef  Google Scholar 

  111. Mayer, K., Blume, F., Wyckoff, S.N., Brokmeier, L.L., Strehl, U.: Neurofeedback of slow cortical potentials as a treatment for adults with attention deficit-/hyperactivity disorder. Clin. Neurophysiol. 127(2), 1374–1386 (2016)

    CrossRef  Google Scholar 

  112. Mayer, K., Wyckoff, S.N., Fallgatter, A.J., Ehlis, A.-C., Strehl, U.: Neurofeedback as a nonpharmacological treatment for adults with attention-deficit/hyperactivity disorder (ADHD): study protocol for a randomized controlled trial. Trials 16(1), 1–14 (2015)

    CrossRef  Google Scholar 

  113. Kamranmehr, F., Farsi, A., Kavyani, M.: The effectiveness of mindfulness and biofeedback-relaxation training on anxiety, depression and dynamic and static balance in the elderly women with mild anxiety and depression. Aging Psychol. 6(3), 248–253 (2020)

    Google Scholar 

  114. Ramirez, R., Palencia-Lefler, M., Giraldo, S., Vamvakousis, Z.: Musical neurofeedback for treating depression in elderly people. Front. Neurosci. 9, 354 (2015)

    CrossRef  Google Scholar 

  115. Jirayucharoensak, S., Israsena, P., Pan-Ngum, S., Hemrungrojn, S., Maes, M.: A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment. Clin. Interv. Aging 14, 347 (2019)

    CrossRef  Google Scholar 

  116. Bevilacqua, R., Maranesi, E., Riccardi, G.R., Di Donna, V., Pelliccioni, P., Luzi, R., Lattanzio, F., Pelliccioni, G.: Non-immersive virtual reality for rehabilitation of the older people: a systematic review into efficacy and effectiveness. J. Clin. Med. 8(11), 1882 (2019)

    Google Scholar 

  117. Golisz, K.: Occupational therapy interventions to improve driving performance in older adults: a systematic review. Am. J. Occup. Ther. 68(6), 662–669 (2014)

    CrossRef  Google Scholar 

  118. Hao, J., Xie, H., Harp, K., Chen, Z., Siu, K.-C.: Effects of virtual reality intervention on neural plasticity in stroke rehabilitation: a systematic review. Arch. Phys. Med. Rehabil. (2021)

    Google Scholar 

  119. Loos, E., Kaufman, D.: Positive impact of exergaming on older adults’ mental and social well-being: in search of evidence. In: International Conference on Human Aspects of IT for the Aged Population, pp. 101–112. Springer (2018)

    Google Scholar 

  120. Anderson-Hanley, C., Maloney, M., Barcelos, N., Striegnitz, K., Kramer, A.: Neuropsychological benefits of neuro-exergaming for older adults: a pilot study of an interactive physical and cognitive exercise system (iPACES). J. Aging Phys. Act. 25(1), 73–83 (2017)

    CrossRef  Google Scholar 

  121. Barcelos, N., Shah, N., Cohen, K., Hogan, M.J., Mulkerrin, E., Arciero, P.J., Cohen, B.D., Kramer, A.F., Anderson-Hanley, C.: Aerobic and cognitive exercise (ACE) pilot study for older adults: executive function improves with cognitive challenge while exergaming. J. Int. Neuropsychol. Soc. 21(10), 768–779 (2015)

    CrossRef  Google Scholar 

  122. Bonnechère, B., Klass, M., Langley, C., Sahakian, B.J.: Brain training using cognitive apps can improve cognitive performance and processing speed in older adults. Sci. Rep. 11(1), 1–11 (2021)

    CrossRef  Google Scholar 

  123. Ballesteros, S., Prieto, A., Mayas, J., Toril, P., Pita, C., Ponce de León, L., Reales, J.M., Waterworth, J.: Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial. Front. Aging Neurosci. 6, 277 (2014)

    CrossRef  Google Scholar 

  124. Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Nozawa, T., Kambara, T., Sekiguchi, A., Miyauchi, C.M., Kotozaki, Y., Nouchi, H.: Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial. PloS One 8(2), e55518 (2013)

    Google Scholar 

  125. Li, X., Zhang, J., Li, X.-D., Cui, W., Su, R.: Neurofeedback training for brain functional connectivity improvement in mild cognitive impairment. J. Med. Biol. Eng. 40, 484–495 (2020)

    CrossRef  Google Scholar 

  126. Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M.L., Rana, M., Oblak, E.: Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18(2), 86–100 (2017)

    CrossRef  Google Scholar 

  127. Lee, T.-S., Goh, S.J.A., Quek, S.Y., Phillips, R., Guan, C., Cheung, Y.B., Feng, L., Teng, S.S.W., Wang, C.C., Chin, Z.Y.: A brain-computer interface based cognitive training system for healthy elderly: a randomized control pilot study for usability and preliminary efficacy. PloS One 8(11), e79419 (2013)

    Google Scholar 

  128. Paszkiel, S.: Using BCI and VR technology in neurogaming. In: Analysis and Classification of EEG Signals for Brain–Computer Interfaces, pp. 93–99. Springer (2020)

    Google Scholar 

  129. Stojan, R., Voelcker-Rehage, C.: A systematic review on the cognitive benefits and neurophysiological correlates of exergaming in healthy older adults. J. Clin. Med. 8(5), 734 (2019)

    CrossRef  Google Scholar 

  130. Temprado, J.-J.: Can exergames be improved to better enhance behavioral adaptability in older adults? An ecological dynamics perspective. Front. Aging Neurosci. 13, 242 (2021)

    CrossRef  Google Scholar 

  131. Diamond, K., Mowszowski, L., Cockayne, N., Norrie, L., Paradise, M., Hermens, D.F., Lewis, S.J., Hickie, I.B., Naismith, S.L.: Randomized controlled trial of a healthy brain ageing cognitive training program: effects on memory, mood, and sleep. J. Alzheimers Dis. 44(4), 1181–1191 (2015)

    CrossRef  Google Scholar 

  132. Krames, E.S., Peckham, P.H., Rezai, A., Aboelsaad, F.: What is neuromodulation? In: Neuromodulation, pp. 3–8. Elsevier (2009)

    Google Scholar 

  133. Solomons, C.D., Shanmugasundaram, V.: A review of transcranial electrical stimulation methods in stroke rehabilitation. Neurol. India 67(2), 417 (2019)

    CrossRef  Google Scholar 

  134. Calderón, M.A.F., Jiménez, L.O., Ledesma, M.J.S.: Transcranial magnetic stimulation versus transcranial direct current stimulation as neuromodulatory techniques in stroke rehabilitation. In: Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 422–427 (2018)

    Google Scholar 

  135. DeFina, P.A., Halper, J.P., Fellus, J.L., Machado, C., Chinchilla, M., Prestigiacomo, C.J.: Neuroplasticity and neuromarker driven neuromodulation: the future path to normalizing brain function. Funct. Neurol. Rehabil. Ergon. 6(1), 27 (2016)

    Google Scholar 

  136. Waqar, M.A., Conright, K., Currie, D.R., Cate, J.C.: Technological advancements in pain management in the elderly population. Using Technol. Improve Care Older Adults 124 (2017)

    Google Scholar 

  137. Rangarajan, S.K., Suhas, S., Reddy, M.S.S., Sreeraj, V.S., Sivakumar, P.T., Venkatasubramanian, G.: Domiciliary tDCS in geriatric psychiatric disorders: opportunities and challenges. Indian J. Psychol. Med. 02537176211003666 (2021)

    Google Scholar 

  138. McACHRAN, S.E., Daneshgari, F.: Sacral neuromodulation in the older woman. Clin. Obstet. Gynecol. 50(3), 735–744 (2007)

    CrossRef  Google Scholar 

  139. McDonald, W.M.: Neuromodulation treatments for geriatric mood and cognitive disorders. Am. J. Geriatr. Psychiatry 24(12), 1130–1141 (2016)

    CrossRef  Google Scholar 

  140. Martins, A.R., Fregni, F., Simis, M., Almeida, J.: Neuromodulation as a cognitive enhancement strategy in healthy older adults: promises and pitfalls. Aging Neuropsychol. Cogn. 24(2), 158–185 (2017)

    CrossRef  Google Scholar 

  141. Luan, S., Williams, I., Nikolic, K., Constandinou, T.G.: Neuromodulation: present and emerging methods. Front. Neuroengineering 7, 27 (2014)

    CrossRef  Google Scholar 

  142. Ceresa, M., Mangado, N., Andrews, R.J., Ballester, M.A.G.: Computational models for predicting outcomes of neuroprosthesis implantation: the case of cochlear implants. Mol. Neurobiol. 52(2), 934–941 (2015)

    CrossRef  Google Scholar 

  143. Warwick, K.: Neuroengineering and neuroprosthetics. Brain Neurosc. Adv. 2, 2398212818817499 (2018)

    CrossRef  Google Scholar 

  144. Alm, N., Arnott, J.L., Dobinson, L., Massie, P., Hewines, I.: Cognitive prostheses for elderly people. In: IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat. No. 01CH37236), pp. 806–810. IEEE (2001)

    Google Scholar 

  145. Encarnação, P.: Episodic memory visualization in robot companions providing a memory prosthesis for elderly users. In: Assistive Technology: From Research to Practice, vol. 33, p. 120. AAATE (2013)

    Google Scholar 

  146. Belkacem, A.N., Jamil, N., Palmer, J.A., Ouhbi, S., Chen, C.: Brain computer interfaces for improving the quality of life of older adults and elderly patients. Front. Neurosci. 14, 692 (2020)

    CrossRef  Google Scholar 

  147. Panuccio, G., Semprini, M., Natale, L., Buccelli, S., Colombi, I., Chiappalone, M.: Progress in neuroengineering for brain repair: new challenges and open issues. Brain Neurosci. Adv. 2, 2398212818776475 (2018)

    CrossRef  Google Scholar 

  148. Lebedev, M.A., Opris, I., Casanova, M.F.: Augmentation of brain function: facts, fiction and controversy. Front. Syst. Neurosci. 12, 45 (2018)

    CrossRef  Google Scholar 

  149. Rosenfeld, J.V., Wong, Y.T.: Neurobionics and the brain–computer interface: current applications and future horizons. Med. J. Aust. 206(8), 363–368 (2017)

    CrossRef  Google Scholar 

  150. Moxon, K., Saez, I., Ditterich, J.: Mind over matter: cognitive neuroengineering. In: Cerebrum: the Dana Forum on Brain Science. Dana Foundation (2019)

    Google Scholar 

  151. Rao, R.P.: Brain Co-Processors: Using AI to Restore and Augment Brain Function (2020). arXiv:201203378

  152. Zimerman, M., Nitsch, M., Giraux, P., Gerloff, C., Cohen, L.G., Hummel, F.C.: Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann. Neurol. 73(1), 10 (2013)

    CrossRef  Google Scholar 

  153. Wexler, A.: Who uses direct-to-consumer brain stimulation products, and why? A study of home users of tDCS devices. J. Cogn. Enhancement 2(1), 114–134 (2018)

    CrossRef  Google Scholar 

  154. Bevilacqua, R., Felici, E., Marcellini, F., Glende, S., Klemcke, S., Conrad, I., Esposito, R., Cavallo, F., Dario, P.: Robot-era project: preliminary results on the system usability. In: International Conference of Design, User Experience, and Usability, pp. 553–561. Springer (2015)

    CrossRef  Google Scholar 

  155. White, S.W., Richey, J.A., Gracanin, D., Bell, M.A., LaConte, S., Coffman, M., Trubanova, A., Kim, I.: The promise of neurotechnology in clinical translational science. Clin. Psychol. Sci. 3(5), 797–815 (2015)

    CrossRef  Google Scholar 

  156. Callahan, C.M., Foroud, T., Saykin, A.J., Shekhar, A., Hendrie, H.C.: Translational research on aging: clinical epidemiology as a bridge between the sciences. Transl. Res. 163(5), 439–445 (2014)

    CrossRef  Google Scholar 

  157. McDowell, K., Ries, A.A.: Translational approach to neurotechnology development. In: International Conference on Augmented Cognition, pp. 353–360. Springer (2013)

    CrossRef  Google Scholar 

  158. Liu, L., Stroulia, E., Nikolaidis, I., Miguel-Cruz, A., Rincon, A.R.: Smart homes and home health monitoring technologies for older adults: a systematic review. Int. J. Med. Informatics 91, 44–59 (2016)

    CrossRef  Google Scholar 

  159. Duval-Couetil, N., Ladisch, M., Yi, S.: Addressing academic researcher priorities through science and technology entrepreneurship education. J. Technol. Transf. 46(2), 288–318 (2021)

    CrossRef  Google Scholar 

  160. Gómez-López, P., Montero, F., López, M.T.: Empowering UX of elderly people with Parkinson’s disease via BCI touch. In: International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 161–170. Springer (2019)

    Google Scholar 

  161. Carroll, S., Kobayashi, K., Cervantes, M.N., Freeman, S., Saini, M., Tracey, S.: Supporting healthy aging through the scale-up, spread, and sustainability of assistive technology implementation: a rapid realist review of participatory co-design for assistive technology with older adults. Gerontol. Geriatr. Med. 7, 23337214211023268 (2021)

    CrossRef  Google Scholar 

  162. Vermeeren, A.P., Roto, V., Väänänen, K.: Design-inclusive UX research: design as a part of doing user experience research. Behav. Inf. Technol. 35(1), 21–37 (2016)

    CrossRef  Google Scholar 

  163. Privitera, M.B., Evans, M., Southee, D.: Human factors in the design of medical devices–approaches to meeting international standards in the European Union and USA. Appl. Ergon. 59, 251–263 (2017)

    CrossRef  Google Scholar 

  164. Kim, S.-O., Pyun, S.-B., Park, S.-A.: Improved cognitive function and emotional condition measured using electroencephalography in the elderly during horticultural activities. HortScience 1(aop), 1–10 (2021)

    Google Scholar 

  165. Kober, S.E., Reichert, J.L., Schweiger, D., Neuper, C., Wood, G.: Does feedback design matter? A neurofeedback study comparing immersive virtual reality and traditional training screens in elderly. Int. J. Serious Games 4(3) (2017)

    Google Scholar 

  166. Williams, T.J., Jones, S.L., Lutteroth, C., Dekoninck, E.: Boyd HC augmented reality and older adults: a comparison of prompting types. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2021)

    Google Scholar 

  167. Allison, B., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., Graser, A.: BCI demographics: how many (and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 107–116 (2010)

    CrossRef  Google Scholar 

  168. Kaiser, V., Kreilinger, A., Müller-Putz, G.R., Neuper, C.: First steps toward a motor imagery based stroke BCI: new strategy to set up a classifier. Front. Neurosci. 5, 86 (2011)

    CrossRef  Google Scholar 

  169. Petrushin, A., Tessadori, J., Barresi, G., Mattos, L.S.: Effect of a click-like feedback on motor imagery in EEG-BCI and eye-tracking hybrid control for telepresence. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 628–633. IEEE (2021)

    Google Scholar 

  170. Renaud, K., Van Biljon, J.: Predicting technology acceptance and adoption by the elderly: a qualitative study. In: Proceedings of the 2008 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists on IT Research in Developing Countries: Riding the Wave of Technology, pp. 210–219 (2008)

    Google Scholar 

  171. Chen, K., Chan, A.H.S.: Gerontechnology acceptance by elderly Hong Kong Chinese: a senior technology acceptance model (STAM). Ergonomics 57(5), 635–652 (2014)

    CrossRef  Google Scholar 

  172. Talukder, M.S., Sorwar, G., Bao, Y., Ahmed, J.U., Palash, M.A.S.: Predicting antecedents of wearable healthcare technology acceptance by elderly: a combined SEM-Neural Network approach. Technol. Forecast. Soc. Change 150, 119793 (2020)

    Google Scholar 

  173. Oh, S.-J., Ryu, J.-N.: The effect of brain-computer interface-based cognitive training in patients with dementia. J. Korean Soc. Phys. Med. 13(4), 59–65 (2018)

    CrossRef  Google Scholar 

  174. Spreicer, W.: Tangible interfaces as a chance for higher technology acceptance by the elderly. In: Proceedings of the 12th International Conference on Computer Systems and Technologies, pp. 311–316 (2011)

    Google Scholar 

  175. Fleury, M., Lioi, G., Barillot, C., Lécuyer, A.: A survey on the use of haptic feedback for brain-computer interfaces and neurofeedback. Front. Neurosci. 14, 528 (2020)

    CrossRef  Google Scholar 

  176. Škola, F., Liarokapis, F.: Embodied VR environment facilitates motor imagery brain–computer interface training. Comput. Graph. 75, 59–71 (2018)

    CrossRef  Google Scholar 

  177. Kuehn, E., Perez-Lopez, M.B., Diersch, N., Döhler, J., Wolbers, T., Riemer, M.: Embodiment in the aging mind. Neurosci. Biobehav. Rev. 86, 207–225 (2018)

    CrossRef  Google Scholar 

  178. Müller, O., Rotter, S.: Neurotechnology: current developments and ethical issues. Front. Syst. Neurosci. 11, 93 (2017)

    CrossRef  Google Scholar 

  179. Sundgren, S., Stolt, M., Suhonen, R.: Ethical issues related to the use of gerontechnology in older people care: a scoping review. Nurs. Ethics 27(1), 88–103 (2020)

    CrossRef  Google Scholar 

  180. Eijkholt, M.: Clinical neuroethics: cracking brains and healthcare systems. J. Hosp. Ethics 6(1), 74–75 (2019)

    Google Scholar 

  181. Friedman, B., Kahn, P., Borning, A.: Value sensitive design: theory and methods. University of Washington Technical Report, pp. 2–12 (2002)

    Google Scholar 

  182. Yuste, R., Goering, S., Bi, G., Carmena, J.M., Carter, A., Fins, J.J., Friesen, P., Gallant, J., Huggins, J.E., Illes, J.: Four ethical priorities for neurotechnologies and AI. Nature News 551(7679), 159 (2017)

    CrossRef  Google Scholar 

  183. Crivelli, D., Balconi, M.: The agent brain: a review of non-invasive brain stimulation studies on sensing agency. Front. Behav. Neurosci. 11, 229 (2017)

    CrossRef  Google Scholar 

  184. Bührle, C.P.: Changes in personality: possible hazards arising from chronic implantation of electrostimulation devices such as deep brain stimulation systems (DBS) or advanced electronic neuroprostheses. In: Implanted Minds. Transcript-Verlag, pp. 183–222 (2014)

    Google Scholar 

  185. Marson, F., Lasaponara, S., Cavallo, M.: A scoping review of neuromodulation techniques in neurodegenerative diseases: a useful tool for clinical practice? Medicina 57(3), 215 (2021)

    CrossRef  Google Scholar 

  186. Wallach, W.: From robots to techno sapiens: ethics, law and public policy in the development of robotics and neurotechnologies. Law Innov. Technol. 3(2), 185–207 (2011)

    CrossRef  Google Scholar 

  187. Goering, S., Klein, E., Sullivan, L.S., Wexler, A., y Arcas, B.A., Bi, G., Carmena, J.M., Fins, J.J., Friesen, P., Gallant, J.: Recommendations for responsible development and application of neurotechnologies. Neuroethics 1–22 (2021)

    Google Scholar 

  188. Earp, B.D., Sandberg, A., Kahane, G., Savulescu, J.: When is diminishment a form of enhancement? Rethinking the enhancement debate in biomedical ethics. Front. Syst. Neurosci. 8, 12 (2014)

    CrossRef  Google Scholar 

  189. Corcella, L., Manca, M., Nordvik, J.E., Paternò, F., Sanders, A.-M., Santoro, C.: Enabling personalisation of remote elderly assistance. Multimed. Tools Appl. 78(15), 21557–21583 (2019)

    CrossRef  Google Scholar 

  190. Organization, W.H.: Classification of Digital Health Interventions v1. 0: A Shared Language to Describe the Uses of Digital Technology for Health. World Health Organization (2018)

    Google Scholar 

  191. Kostkova, P.: Grand challenges in digital health. Front. Public Health 3, 134 (2015)

    CrossRef  Google Scholar 

  192. Recchia, G., Capuano, D.M., Mistri, N., Verna, R.: Digital therapeutics-what they are, what they will be. Acta. Sci. Med. Sci. 4, 1–9 (2020)

    Google Scholar 

  193. Dang, A., Arora, D., Rane, P.: Role of digital therapeutics and the changing future of healthcare. J. Family Med. Prim. Care 9(5), 2207 (2020)

    CrossRef  Google Scholar 

  194. Abbadessa, G., Brigo, F., Clerico, M., De Mercanti, S., Trojsi, F., Tedeschi, G., Bonavita, S., Lavorgna, L.: Digital therapeutics in neurology. J. Neurol. 1–16 (2021)

    Google Scholar 

  195. Kaufman, N.: Digital therapeutics: leading the way to improved outcomes for people with diabetes. Diab. Spectr. 32(4), 301–303 (2019)

    CrossRef  Google Scholar 

  196. Kaldy, J.: Digital therapeutics: health care wired for the future. Senior Care Pharmacist 35(8), 338–344 (2020)

    CrossRef  Google Scholar 

  197. Bevilacqua, R., Casaccia, S., Cortellessa, G., Astell, A., Lattanzio, F., Corsonello, A., D’ascoli, P., Paolini, S., Di Rosa, M., Rossi, L.: Coaching through technology: a systematic review into efficacy and effectiveness for the ageing population. Int. J. Environ. Res. Public Health 17(16), 5930 (2020)

    CrossRef  Google Scholar 

  198. Khelassi, A., Estrela, V.V., Monteiro, A.C.B., França, R.P., Iano, Y., Razmjooy, N.: Health 4.0: applications, management, technologies and review. Med. Technol. J. (2019)

    Google Scholar 

  199. Chang, C.-J., Yang, T.-F., Yang, S.-W., Chern, J.-S.: Cortical modulation of motor control biofeedback among the elderly with high fall risk during a posture perturbation task with augmented reality. Front. Aging Neurosci. 8, 80 (2016)

    CrossRef  Google Scholar 

  200. Wright, J.M., Regele, O.B., Kourtis, L.C., Pszenny, S.M., Sirkar, R., Kovalchick, C., Jones, G.B.: Evolution of the digital biomarker ecosystem. Digit. Med. 3(4), 154 (2017)

    CrossRef  Google Scholar 

  201. Cavedoni, S., Chirico, A., Pedroli, E., Cipresso, P., Riva, G.: Digital biomarkers for the early detection of mild cognitive impairment: artificial intelligence meets virtual reality. Front. Human Neurosci. 14 (2020)

    Google Scholar 

  202. Rutkowski, T.M., Zhao, Q., Abe, M.S., Otake, M.: AI Neurotechnology for Aging Societies--Task-load and Dementia EEG Digital Biomarker Development Using Information Geometry Machine Learning Methods (2018). arXiv:181112642

  203. Ansado, J., Chasen, C., Bouchard, S., Northoff, G.: How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive training. Neurosci. Biobehav. Rev. 120, 583–594 (2021)

    CrossRef  Google Scholar 

  204. Sue, F.-M., Chang, Y.-S., Sheu, R.-K.: A platform for fusing psychological and physiological data from hybrid cloud. In: 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), pp. 1–6. IEEE (2016)

    Google Scholar 

  205. Tomassini C 5.5 National report: Ageing And Technologies, Italy, vol 165

    Google Scholar 

  206. Berger, R.P., Houle, J.-F., Hayes, R.L., Wang, K.K., Mondello, S., Bell, M.J.: Translating biomarkers research to clinical care: applications and issues for rehabilomics. PM&R 3(6), S31–S38 (2011)

    CrossRef  Google Scholar 

  207. Dryden, E., Sahal, M., Feldman, S., Ayaz, H., Heiman-Patterson, T.: Amyotrophic lateral sclerosis disease progression presents difficulties in brain computer interface use. In: International Conference on Applied Human Factors and Ergonomics, pp. 70–77. Springer (2021)

    Google Scholar 

  208. Tun, S.Y.Y., Madanian, S., Mirza, F.: Internet of things (IoT) applications for elderly care: a reflective review. Aging Clin. Exp. Res. 33(4), 855–867 (2021)

    CrossRef  Google Scholar 

  209. Pal, D., Funilkul, S., Charoenkitkarn, N., Kanthamanon, P.: Internet-of-things and smart homes for elderly healthcare: an end user perspective. IEEE Access 6, 10483–10496 (2018)

    CrossRef  Google Scholar 

  210. Azimi, I., Rahmani, A.M., Liljeberg, P., Tenhunen, H.: Internet of things for remote elderly monitoring: a study from user-centered perspective. J. Ambient. Intell. Humaniz. Comput. 8(2), 273–289 (2017)

    CrossRef  Google Scholar 

  211. Marques, G.: Ambient assisted living and internet of things. In: Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities, pp. 100–115 (2019)

    Google Scholar 

  212. Andrade, T., Bastos, D.: Extended reality in IoT scenarios: concepts, applications and future trends. In: 5th Experiment International Conference (exp. at'19), pp. 107–112. IEEE (2019)

    Google Scholar 

  213. Amorim, P., Santos, B.S., Dias, P., Silva, S., Martins, H.: Serious games for stroke telerehabilitation of upper limb-a review for future research. Int. J. Telerehabilitation 12(2), 65–76 (2020)

    CrossRef  Google Scholar 

  214. Elayan, H., Aloqaily, M., Guizani, M.: Digital twin for intelligent context-aware IoT healthcare systems. IEEE Internet Things J. (2021)

    Google Scholar 

  215. Miraz, M.H., Ali, M., Excell, P.S., Picking, R.A.: Review on Internet of Things (IoT), Internet of everything (IoE) and Internet of nano things (IoNT). In: Internet Technologies and Applications (ITA), pp. 219–224. IEEE 2015

    Google Scholar 

  216. Javaid, M., Khan, I.H.: Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 pandemic. J. Oral Biol. Craniofac. Res. 11(2), 209–214 (2021)

    CrossRef  Google Scholar 

  217. DiGiovanni, G., Mousaw, K., Lloyd, T., Dukelow, N., Fitzgerald, B., D’Aurizio, H., Loh, K.P., Mohile, S., Ramsdale, E., Maggiore, R.: Development of a telehealth geriatric assessment model in response to the COVID-19 pandemic. J. Geriatr. Oncol. 11(5), 761–763 (2020)

    CrossRef  Google Scholar 

  218. Vishnu, S., Ramson, S.J., Jegan, R.: Internet of medical things (IoMT)-an overview. In: 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), pp. 101–104. IEEE 2020

    Google Scholar 

  219. Meng, W., Cai, Y., Yang, L.T., Chiu, W.-Y.: Hybrid emotion-aware monitoring system based on brainwaves for internet of medical things. IEEE Internet Things J. (2021)

    Google Scholar 

  220. Elmalaki, S., Demirel, B.U., Taherisadr, M., Stern-Nezer, S., Lin, J.J., Al Faruque, M.A.: Towards internet-of-things for wearable neurotechnology. In: 22nd International Symposium on Quality Electronic Design (ISQED), pp. 559–565. IEEE (2021)

    Google Scholar 

  221. Shirke, B., Wong, J., Libut, J.C., George, K., Oh, S.J.: Brain-IoT based emotion recognition system. In: 10th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0991–0995. IEEE (2020)

    Google Scholar 

  222. Schiliro, F., Moustafa, N., Beheshti, A.: Cognitive privacy: AI-enabled privacy using EEG signals in the internet of things. In: 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys), pp. 73–79. IEEE, (2020)

    Google Scholar 

  223. Maiti, M., Ghosh, U.: Next generation internet of things in fintech ecosystem. IEEE Internet Things J. (2021)

    Google Scholar 

  224. Yu, B., Hu, J., Funk, M., Feijs, L.: DeLight: biofeedback through ambient light for stress intervention and relaxation assistance. Pers. Ubiquit. Comput. 22(4), 787–805 (2018)

    CrossRef  Google Scholar 

  225. Swan, M., Kido, T.: Ruckenstein M BRAINY–multi-modal brain training app for Google glass: cognitive enhancement, wearable computing, and the Internet-of-Things extend personal data analytics. In: Workshop on Personal Data Analytics in the Internet of Things 40th International Conference on Very Large Databases (2014)

    Google Scholar 

  226. Miralles, F., Vargiu, E., Rafael-Palou, X., Solà, M., Dauwalder, S., Guger, C., Hintermüller, C., Espinosa, A., Lowish, H., Martin, S.: Brain–computer interfaces on track to home: results of the evaluation at disabled end-users’ homes and lessons learnt. Front. ICT 2, 25 (2015)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacinto Barresi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Barresi, G., Zenzeri, J., Tessadori, J., Laffranchi, M., Semprini, M., De Michieli, L. (2022). Neuro-Gerontechnologies: Applications and Opportunities. In: Scataglini, S., Imbesi, S., Marques, G. (eds) Internet of Things for Human-Centered Design. Studies in Computational Intelligence, vol 1011. Springer, Singapore. https://doi.org/10.1007/978-981-16-8488-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8488-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8487-6

  • Online ISBN: 978-981-16-8488-3

  • eBook Packages: EngineeringEngineering (R0)