Abstract
A positive aging requires placing human changes due to healthy or pathological senescence at the center of gerontechnology design. A set of key solutions for accomplishing this goal is offered by neurotechnologies. These systems can monitor and interpret data related to the central and peripheral nervous systems for understanding the individual conditions, enabling the control and the adaptation of assistive and rehabilitative devices, influencing the nervous system itself and empowering mental processes. Focusing on non-invasive approaches (closer to real-world applications), this chapter describes how adopting these solutions can improve the daily life of seniors and help the translational study of the aging brain in real settings through approaches like the one of neuroergonomics. This manuscript also highlights the potential of neuro-gerontechnologies within emerging frameworks that could enable digital biomarker-based assessment and personalization features. In particular, pervasive solutions of Internet of Things and Minds (IoTM) can make everyday devices truly human-centered (and, in this case, senior-centered). Indeed, a network of systems interpreting a person’s will and needs defines a step-change to properly serve human beings according to their fragilities.
Keywords
- Neurotechnology
- Gerontechnology
- Human-Centered Design
- Personalization
- Internet of Things
- Digital Health
Marianna Semprini and Lorenzo De Michieli equally contributed to this work.
This is a preview of subscription content, access via your institution.
Buying options





References
Hof, P.R., Mobbs, C.V.: Handbook of the Neuroscience of Aging. Academic Press (2010)
Kalra, S., Sharma, S.K.: Diabetes in the elderly. Diab. Ther. 9(2), 493–500 (2018)
Arvanitakis, Z., Shah, R.C., Bennett, D.A.: Diagnosis and management of dementia. JAMA 322(16), 1589–1599 (2019)
Lee, J.E., Shin, D.W., Han, K., Kim, D., Yoo, J.E., Lee, J., Kim, S., Son, K.Y., Cho, B., Kim, M.J.: Changes in metabolic syndrome status and risk of dementia. J. Clin. Med. 9(1), 122 (2020)
Burdick, D.C., Kwon, S.: Gerotechnology: Research and Practice in Technology and Aging. Springer Publishing Company (2004)
Graafmans, J., Fozard, J., Rietsema, J., Van Berlo, A., Bouma, H.: Gerontechnology: matching the technological environment to the needs and capacities of the elderly. Aging Hum. Factors 19–30 (1996)
Vázquez-Guardado, A., Yang, Y., Bandodkar, A.J., Rogers, J.A.: Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23(12), 1522–1536 (2020)
Fairclough, S.H., Lotte, F.: Grand challenges in neurotechnology and system neuroergonomics. Front. Neuroergonomics 1, 2 (2020)
Rajput, R., Kaur, R., Chadha, R., Mani, S, Rachana, R., Kaur, H., Singh, M.: The aging brain: from physiology to neurodegeneration. In: Handbook of Research on Critical Examinations of Neurodegenerative Disorders, pp. 1–23. IGI Global (2019)
Huseyn, E.: Examining neurological and neurodegenerative disorders related to aging and elderly. Int. Trends Sci. Technol. 27 (2021)
Lo, R.Y.: The borderland between normal aging and dementia. Tzu-Chi Med. J. 29(2), 65 (2017)
Howard, J.H., Jr., Howard, D.V.: Aging mind and brain: is implicit learning spared in healthy aging? Front. Psychol. 4, 817 (2013)
MacNee, W., Rabinovich, R.A., Choudhury, G.: Ageing and the border between health and disease. Eur. Respir. J. 44(5), 1332–1352 (2014)
Crews, J.E., Campbell, V.A.: Vision impairment and hearing loss among community-dwelling older Americans: implications for health and functioning. Am. J. Public Health 94(5), 823–829 (2004)
Seidler, R.D., Bernard, J.A., Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J.T., Kwak, Y., Lipps, D.B.: Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 34(5), 721–733 (2010)
Votruba, K.L., Persad, C., Giordani, B.: Cognitive deficits in healthy elderly population with “normal” scores on the Mini-Mental State Examination. J. Geriatr. Psychiatry Neurol. 29(3), 126–132 (2016)
Lipsitz, L.A., Novak, V.: Aging and the autonomic nervous system. In: Primer on the Autonomic Nervous System, pp. 271–273. Elsevier (2012)
Chen, R.-L., Balami, J.S., Esiri, M.M., Chen, L.-K., Buchan, A.M.: Ischemic stroke in the elderly: an overview of evidence. Nat. Rev. Neurol. 6(5), 256–265 (2010)
Knopman, D.S., Petersen, R.C.: Mild cognitive impairment and mild dementia: a clinical perspective. Mayo Clin. Proc. 10, 1452–1459 (2014)
Kaszniak, A.W., Christenson, G.D.: Differential diagnosis of dementia and depression. In: Neuropsychological Assessment of Dementia and Depression in Older Adults: A Clinician’s Guide, pp. 81–117 (1994)
Logroscino, G., Traynor, B., Hardiman, O., Couratier, P., Mitchell, J., Swingler, R., Beghi, E.: Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. J. Neurol. Neurosurg. Psychiatry 79(1), 6–11 (2008)
Broussalis, E., Grinzinger, S., Kunz, A., Killer-Oberpfalzer, M., Haschke-Becher, E., Hartung, H.P., Kraus, J.: Late age onset of amyotrophic lateral sclerosis is often not considered in elderly people. Acta Neurol. Scand. 137(3), 329–334 (2018)
Mrak, R.E., Griffin, W.S.T., Graham, D.I.: Aging-associated changes in human brain. J. Neuropathol. Exp. Neurol. 56(12), 1269–1275 (1997)
Lis, C., Gaviria, M.: Vascular dementia, hypertension, and the brain. Neurol. Res. 19(5), 471–480 (1997)
Penninx, B.W., Beekman, A.T., Ormel, J., Kriegsman, D.M., Boeke, A.J.P., Van Eijk, J.T.M., Deeg, D.J.: Psychological status among elderly people with chronic diseases: does type of disease play a part? J. Psychosom. Res. 40(5), 521–534 (1996)
Ambrose, A.F., Paul, G., Hausdorff, J.M.: Risk factors for falls among older adults: a review of the literature. Maturitas 75(1), 51–61 (2013)
Lipsitz, L.A., Manor, B., Habtemariam, D., Iloputaife, I., Zhou, J., Travison, T.G.: The pace and prognosis of peripheral sensory loss in advanced age: association with gait speed and falls. BMC Geriatr. 18(1), 1–8 (2018)
Chau, R.M., Ng, T.K., Kwan, R.L., Choi, C.-H., Cheing, G.L.: Risk of fall for people with diabetes. Disabil. Rehabil. 35(23), 1975–1980 (2013)
Kirkland, J.L.: Translating advances from the basic biology of aging into clinical application. Exp. Gerontol. 48(1), 1–5 (2013)
Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., May, A.: Training-induced brain structure changes in the elderly. J. Neurosci. 28(28), 7031–7035 (2008)
Kattenstroth, J.-C., Kolankowska, I., Kalisch, T., Dinse, H.R.: Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities. Front. Aging Neurosci. 2, 31 (2010)
Maier, M., Ballester, B.R., Verschure, P.F.: Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front. Syst. Neurosci. 13, 74 (2019)
Tardif, S., Simard, M.: Cognitive stimulation programs in healthy elderly: a review. Int. J. Alzheimer’s Dis. (2011)
Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L., Winblad, B.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001)
Piccini, L., Parini, S., Maggi, L., Andreoni, G.A.: wearable home BCI system: preliminary results with SSVEP protocol. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 5384–5387. IEEE (2006)
Doi, T., Makizako, H., Shimada, H., Park, H., Tsutsumimoto, K., Uemura, K., Suzuki, T.: Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study. Aging Clin. Exp. Res. 25 (5), 539–544 (2013)
Huang, C., Wahlund, L.-O., Dierks, T., Julin, P., Winblad, B., Jelic, V.: Discrimination of Alzheimer’s disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clin. Neurophysiol. 111(11), 1961–1967 (2000)
Yang, D., Hong, K.-S., Yoo, S.-H., Kim, C.-S.: Evaluation of neural degeneration biomarkers in the prefrontal cortex for early identification of patients with mild cognitive impairment: an fNIRS study. Front. Hum. Neurosci. 13, 317 (2019)
Zamrini, E., Maestu, F., Pekkonen, E., Funke, M., Makela, J., Riley, M., Bajo, R., Sudre, G., Fernandez, A., Castellanos, N.: Magnetoencephalography as a putative biomarker for Alzheimer's disease. Int. J. Alzheimer’s Dis. (2011)
Larradet, F., Niewiadomski, R., Barresi, G., Caldwell, D.G., Mattos, L.S.: Toward emotion recognition from physiological signals in the wild: approaching the methodological issues in real-life data collection. Front. Psychol. 11, 1111 (2020)
Raj, A., Roberts, B., Hollingshead, K., McDonald, N., Poquette, M., Soussou, W.A.: Wearable multisensory, multiagent approach for detection and mitigation of acute cognitive strain. In: International Conference on Augmented Cognition, pp. 180–200. Springer (2018)
Allanson, J., Fairclough, S.H.: A research agenda for physiological computing. Interact. Comput. 16(5), 857–878 (2004)
Maranesi, E., Fioretti, S., Ghetti, G., Rabini, R., Burattini, L., Mercante, O., Di Nardo, F.: The surface electromyographic evaluation of the functional reach in elderly subjects. J. Electromyogr. Kinesiol. 26, 102–110 (2016)
Shustak, S., Inzelberg, L., Steinberg, S., Rand, D., Pur, M.D., Hillel, I., Katzav, S., Fahoum, F., De Vos, M., Mirelman, A.: Home monitoring of sleep with a temporary-tattoo EEG, EOG and EMG electrode array: a feasibility study. J. Neural Eng. 16(2), 026024 (2019)
Das, D., Datta, S., Bhattacharjee, T., Choudhury, A.D., Pal, A.: Eliminating individual bias to improve stress detection from multimodal physiological data. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5753–5758. IEEE (2018)
Johannessen, E.: Measuring Cognitive Load in a Clinical Setting: Medical Learning and Practice. Queen’s University, Canada (2019)
Papetti, A., Iualé, M., Ceccacci, S., Bevilacqua, R., Germani, M., Mengoni, M.: Smart objects: an evaluation of the present state based on user needs. In: International Conference on Distributed, Ambient, and Pervasive Interactions, pp. 359–368. Springer (2014)
Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)
Chaudhary, P., Agrawal, R.: Brain computer interface: a new pathway to human brain. In: Cognitive Computing in Human Cognition, pp. 99–125. Springer (2020)
Saha, S., Mamun, K.A., Ahmed, K., Mostafa, R., Naik, G.R., Darvishi, S., Khandoker, A.H., Baumert, M.: Progress in brain computer interface: challenges and opportunities. Front. Syst. Neurosci. 15(4) (2021). https://doi.org/10.3389/fnsys.2021.578875
Chan, A.T., Quiroz, J.C., Dascalu, S., Harris, F.C.: An overview of brain computer interfaces. In: Proceedings of the 30th International Conference on Computers and Their Applications (2015)
Zhuang, M., Wu, Q., Wan, F., Hu, Y.: State-of-the-art non-invasive brain–computer interface for neural rehabilitation: a review. J. Neurorestoratology 8(1), 4 (2020)
Nagel, S., Spüler, M.: World’s fastest brain-computer interface: combining EEG2Code with deep learning. PloS One 14(9), e0221909 (2019)
Garg, N., Garg, R., Parrivesh, N., Anand, A., Abhinav, V., Baths, V.: Decoding the neural signatures of valence and arousal from portable EEG headset. bioRxiv (2021)
Fukuma, R., Yanagisawa, T., Saitoh, Y., Hosomi, K., Kishima, H., Shimizu, T., Sugata, H., Yokoi, H., Hirata, M., Kamitani, Y.: Real-time control of a neuroprosthetic hand by magnetoencephalographic signals from paralysed patients. Sci. Rep. 6(1), 1–14 (2016)
Kaas, A., Goebel, R., Valente, G., Sorger, B.: Topographic somatosensory imagery for real-time fMRI brain-computer interfacing. Front. Hum. Neurosci. 13, 427 (2019)
Khalaf, A., Sejdic, E., Akcakaya, M.: A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound. J. Neurosci. Methods 313, 44–53 (2019)
Wyser, D.G., Lambercy, O., Scholkmann, F., Wolf, M., Gassert, R.: Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths. Neurophotonics 4(4), 041413 (2017)
Yaqub, M.A., Woo, S.-W., Hong, K.-S.: Compact, portable, high-density functional near-infrared spectroscopy system for brain imaging. IEEE Access 8, 128224–128238 (2020)
Herweg, A., Gutzeit, J., Kleih, S., Kübler, A.: Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol. Psychol. 121, 117–124 (2016)
Villa-Parra, A., Delisle-Rodríguez, D., López-Delis, A., Bastos-Filho, T., Sagaró, R., Frizera-Neto, A.: Towards a robotic knee exoskeleton control based on human motion intention through EEG and sEMGsignals. Procedia Manufact. 3, 1379–1386 (2015)
Chai, X., Zhang, Z., Guan, K., Lu, Y., Liu, G., Zhang, T., Niu, H.: A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomed. Signal Process. Control 56, 101687 (2020)
Pfurtscheller, G., Allison, B.Z., Bauernfeind, G., Brunner, C., Solis Escalante, T., Scherer, R., Zander, T.O., Mueller-Putz, G., Neuper, C., Birbaumer, N.: The hybrid BCI. Front. Neurosci. 4, 3 (2010)
Yousefi, R., Sereshkeh, A.R., Chau, T.: Exploiting error-related potentials in cognitive task based BCI. Biomed. Phys. Eng. Express 5(1), 015023 (2018)
Schiatti, L., Barresi, G., Tessadori, J., King, L.C., Mattos, L.S.: The effect of vibrotactile feedback on ErrP-based adaptive classification of motor imagery. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6750–6753. IEEE (2019)
Pasqualotto, E., Matuz, T., Federici, S., Ruf, C.A., Bartl, M., Olivetti Belardinelli, M., Birbaumer, N., Halder, S.: Usability and workload of access technology for people with severe motor impairment: a comparison of brain-computer interfacing and eye tracking. Neurorehabil. Neural Repair 29(10), 950–957 (2015)
Barresi, G., Tessadori, J., Schiatti, L., Mazzanti, D., Caldwell, D.G., Mattos, L.S.: Focus-sensitive dwell time in EyeBCI: pilot study. In: 2016 8th Computer Science and Electronic Engineering (CEEC), pp. 54–59. IEEE (2016)
Müller-Putz, G.R., Breitwieser, C., Cincotti, F., Leeb, R., Schreuder, M., Leotta, F., Tavella, M., Bianchi, L., Kreilinger, A., Ramsay, A.: Tools for brain-computer interaction: a general concept for a hybrid BCI. Front. Neuroinform. 5, 30 (2011)
Misbhauddin, M.: Smartwatch-based wearable and usable system for driver drowsiness detection. In: The Proceedings of the Third International Conference on Smart City Applications, pp. 906–920. Springer (2019)
Aricò, P., Borghini, G., Di Flumeri, G., Sciaraffa, N., Babiloni, F.: Passive BCI beyond the lab: current trends and future directions. Physiol. Meas. 39(8), 08TR02 (2018)
Larradet, F., Barresi, G., Mattos, L.S.: Effects of galvanic skin response feedback on user experience in gaze-controlled gaming: a pilot study. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2458–2461. IEEE (2017)
Parsons, T.D., Gaggioli, A., Riva, G.: Extended reality for the clinical, affective, and social neurosciences. Brain Sci. 10(12), 922 (2020)
Georgiev, D.D., Georgieva, I., Gong, Z., Nanjappan, V., Georgiev, G.V.: Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sci. 11(2), 221 (2021)
Sokolov, A.A., Collignon, A., Bieler-Aeschlimann, M.: Serious video games and virtual reality for prevention and neurorehabilitation of cognitive decline because of aging and neurodegeneration. Curr. Opin. Neurol. 33(2), 239–248 (2020)
Baran, M., Lehrer, N., Duff, M., Venkataraman, V., Turaga, P., Ingalls, T., Rymer, W.Z., Wolf, S.L., Rikakis, T.: Interdisciplinary concepts for design and implementation of mixed reality interactive neurorehabilitation systems for stroke. Phys. Ther. 95(3), 449–460 (2015)
Iandolo, R., Marini, F., Semprini, M., Laffranchi, M., Mugnosso, M., Cherif, A., De Michieli, L., Chiappalone, M., Zenzeri, J.: Perspectives and challenges in robotic neurorehabilitation. Appl. Sci. 9(15), 3183 (2019)
Wenk, N., Buetler, K.A., Marchal-Crespo, L.: Virtual reality in robotic neurorehabilitation. In: Virtual Reality in Health and Rehabilitation, pp. 41–60. CRC Press (2020)
Casey, A., Azhar, H., Grzes, M., Sakel, M.: BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients. Disabil. Rehabil. Assist. Technol. 16(5), 525–537 (2021)
Guggenberger, R., Heringhaus, M., Gharabaghi, A.: Brain-machine neurofeedback: robotics or electrical stimulation? Front. Bioeng. Biotechnol. 8, 639 (2020)
Naro, A., Billeri, L., Manuli, A., Balletta, T., Cannavò, A., Portaro, S., Lauria, P., Ciappina, F., Calabrò, R.S.: Breaking the ice to improve motor outcomes in patients with chronic stroke: a retrospective clinical study on neuromodulation plus robotics. Neurol. Sci. 1–9 (2020)
Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., McKenna-Cole, A., Schmit, B.D., Rymer, W.Z.: Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J. Rehabil. Res. Dev. 37(6), 653–662 (2014)
Calabrò, R.S., Russo, M., Naro, A., Milardi, D., Balletta, T., Leo, A., Filoni, S., Bramanti, P.: Who may benefit from armeo power treatment? A neurophysiological approach to predict neurorehabilitation outcomes. PM&R 8(10), 971–978 (2016)
Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)
Reinkensmeyer, D.J., Wolbrecht, E.T., Chan, V., Chou, C., Cramer, S.C., Bobrow, J.E.: Comparison of 3D, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional table top therapy following chronic stroke. Am. J. Phys. Med. Rehabil./Assoc. Acad. Physiatrists 91(11 0 3), S232 (2012)
Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M.: Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation: Technol. Neural Interface 6(2), 108–115 (2003)
Kolakowsky-Hayner, S.A., Crew, J., Moran, S., Shah, A.: Safety and feasibility of using the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury. J Spine 4(003), 1–8 (2013)
Vassallo, C., De Giuseppe, S., Piezzo, C., Maludrottu, S., Cerruti, G., D’Angelo, M.L., Gruppioni, E., Marchese, C., Castellano, S., Guanziroli, E.: Gait patterns generation based on basis functions interpolation for the TWIN lower-limb exoskeleton. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1778–1784. IEEE (2020)
Krebs, H.I., Ferraro, M., Buerger, S.P., Newbery, M.J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B.T., Hogan, N.: Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J. Neuroeng. Rehabil. 1(1), 1–15 (2004)
Casadio, M., Sanguineti, V., Morasso, P.G., Arrichiello, V.: Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol. Health Care 14(3), 123–142 (2006)
Masia, L., Casadio, M., Giannoni, P., Sandini, G., Morasso, P.: Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study. J. Neuroeng. Rehabil. 6(1), 1–11 (2009)
Schmidt, H., Hesse, S., Bernhardt, R., Krüger, J.: HapticWalker–-a novel haptic foot device. ACM Trans. Appl. Percept. (TAP) 2(2), 166–180 (2005)
Hesse, S., Waldner, A., Tomelleri, C.: Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 7(1), 1–10 (2010)
Squeri, V., De Luca, A., Cella, A., Vallone, F., Siri, G., Zigoura, E., Giorgeschi, A., Tavella, E., Puntoni, M., Avella, M.: Robotic evaluation of fall risk in older people: results on trunk parameters in static and dynamic balance conditions by hunova robot. Ann. Phys. Rehabil. Med. 61, e339 (2018)
D’Antonio, E., Galofaro, E., Zenzeri, J., Patané, F., Konczak, J., Casadio, M., Masia, L.: Robotic assessment of wrist proprioception during kinaesthetic perturbations: a neuroergonomic approach. Front. Neurorobot. 15, 19 (2021)
Maggioni, S., Melendez-Calderon, A., Van Asseldonk, E., Klamroth-Marganska, V., Lünenburger, L., Riener, R., Van Der Kooij, H.: Robot-aided assessment of lower extremity functions: a review. J. Neuroeng. Rehabil. 13(1), 1–25 (2016)
Debert, C.T., Herter, T.M., Scott, S.H., Dukelow, S.: Robotic assessment of sensorimotor deficits after traumatic brain injury. J. Neurol. Phys. Ther. 36(2), 58–67 (2012)
Marchal-Crespo, L., Reinkensmeyer, D.J.: Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6(1), 1–15 (2009)
Iwamoto, Y., Imura, T., Suzukawa, T., Fukuyama, H., Ishii, T., Taki, S., Imada, N., Shibukawa, M., Inagawa, T., Araki, H.: Combination of exoskeletal upper limb robot and occupational therapy improve activities of daily living function in acute stroke patients. J. Stroke Cerebrovasc. Dis. 28(7), 2018–2025 (2019)
Dehem, S., Gilliaux, M., Stoquart, G., Detrembleur, C., Jacquemin, G., Palumbo, S., Frederick, A., Lejeune, T.: Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: a single-blind, randomised, controlled trial. Ann. Phys. Rehabil. Med. 62(5), 313–320 (2019)
Kim, M.-S., Kim, S.H., Noh, S.-E., Bang, H.J., Lee, K.-M.: Robotic-assisted shoulder rehabilitation therapy effectively improved poststroke hemiplegic shoulder pain: a randomized controlled trial. Arch. Phys. Med. Rehabil. 100(6), 1015–1022 (2019)
Aprile, I., Germanotta, M., Cruciani, A., Loreti, S., Pecchioli, C., Cecchi, F., Montesano, A., Galeri, S., Diverio, M., Falsini, C.: Upper limb robotic rehabilitation after stroke: a multicenter, randomized clinical trial. J. Neurol. Phys. Ther. 44(1), 3–14 (2020)
Maranesi, E., Riccardi, G.R., Di Donna, V., Di Rosa, M., Fabbietti, P., Luzi, R., Pranno, L., Lattanzio, F., Bevilacqua, R.: Effectiveness of intervention based on end-effector gait trainer in older patients with stroke: a systematic review. J. Am. Med. Dir. Assoc. 21(8), 1036–1044 (2020)
Berger, A., Horst, F., Müller, S., Steinberg, F., Doppelmayr, M.: Current state and future prospects of EEG and fNIRS in robot-assisted gait rehabilitation: a brief review. Front. Hum. Neurosci. 13, 172 (2019)
Frank, D.L., Khorshid, L., Kiffer, J.F., Moravec, C.S., McKee, M.G.: Biofeedback in medicine: who, when, why and how? Ment. Health Fam. Med. 7(2), 85 (2010)
Karatsidis, A., Richards, R.E., Konrath, J.M., Van Den Noort, J.C., Schepers, H.M., Bellusci, G., Harlaar, J., Veltink, P.H.: Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset. J. Neuroeng. Rehabil. 15(1), 1–12 (2018)
de Zambotti, M., Sizintsev, M., Claudatos, S., Barresi, G., Colrain, I.M., Baker, F.C.: Reducing bedtime physiological arousal levels using immersive audio-visual respiratory bio-feedback: a pilot study in women with insomnia symptoms. J. Behav. Med. 42(5), 973–983 (2019)
Garbarino, M., Lai, M., Bender, D., Picard, R.W., Tognetti, S.: Empatica E3—a wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In: 2014 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), pp. 39–42. IEEE (2014)
Pereira, O., Caldeira, J.M., Rodrigues, J.J.: Body sensor network mobile solutions for biofeedback monitoring. Mob. Netw. Appl. 16(6), 713–732 (2011)
Park, J., Park, C.H., Jun, S.-E., Lee, E.-J., Kang, S.W., Kim, N.: Effects of biofeedback-based sleep improvement program on urinary symptoms and sleep patterns of elderly Korean women with overactive bladder syndrome. BMC Urol. 19(1), 1–10 (2019)
Afzal, M.R., Oh, M.-K., Choi, H.Y., Yoon, J.: A novel balance training system using multimodal biofeedback. Biomed. Eng. Online 15(1), 1–11 (2016)
Mayer, K., Blume, F., Wyckoff, S.N., Brokmeier, L.L., Strehl, U.: Neurofeedback of slow cortical potentials as a treatment for adults with attention deficit-/hyperactivity disorder. Clin. Neurophysiol. 127(2), 1374–1386 (2016)
Mayer, K., Wyckoff, S.N., Fallgatter, A.J., Ehlis, A.-C., Strehl, U.: Neurofeedback as a nonpharmacological treatment for adults with attention-deficit/hyperactivity disorder (ADHD): study protocol for a randomized controlled trial. Trials 16(1), 1–14 (2015)
Kamranmehr, F., Farsi, A., Kavyani, M.: The effectiveness of mindfulness and biofeedback-relaxation training on anxiety, depression and dynamic and static balance in the elderly women with mild anxiety and depression. Aging Psychol. 6(3), 248–253 (2020)
Ramirez, R., Palencia-Lefler, M., Giraldo, S., Vamvakousis, Z.: Musical neurofeedback for treating depression in elderly people. Front. Neurosci. 9, 354 (2015)
Jirayucharoensak, S., Israsena, P., Pan-Ngum, S., Hemrungrojn, S., Maes, M.: A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment. Clin. Interv. Aging 14, 347 (2019)
Bevilacqua, R., Maranesi, E., Riccardi, G.R., Di Donna, V., Pelliccioni, P., Luzi, R., Lattanzio, F., Pelliccioni, G.: Non-immersive virtual reality for rehabilitation of the older people: a systematic review into efficacy and effectiveness. J. Clin. Med. 8(11), 1882 (2019)
Golisz, K.: Occupational therapy interventions to improve driving performance in older adults: a systematic review. Am. J. Occup. Ther. 68(6), 662–669 (2014)
Hao, J., Xie, H., Harp, K., Chen, Z., Siu, K.-C.: Effects of virtual reality intervention on neural plasticity in stroke rehabilitation: a systematic review. Arch. Phys. Med. Rehabil. (2021)
Loos, E., Kaufman, D.: Positive impact of exergaming on older adults’ mental and social well-being: in search of evidence. In: International Conference on Human Aspects of IT for the Aged Population, pp. 101–112. Springer (2018)
Anderson-Hanley, C., Maloney, M., Barcelos, N., Striegnitz, K., Kramer, A.: Neuropsychological benefits of neuro-exergaming for older adults: a pilot study of an interactive physical and cognitive exercise system (iPACES). J. Aging Phys. Act. 25(1), 73–83 (2017)
Barcelos, N., Shah, N., Cohen, K., Hogan, M.J., Mulkerrin, E., Arciero, P.J., Cohen, B.D., Kramer, A.F., Anderson-Hanley, C.: Aerobic and cognitive exercise (ACE) pilot study for older adults: executive function improves with cognitive challenge while exergaming. J. Int. Neuropsychol. Soc. 21(10), 768–779 (2015)
Bonnechère, B., Klass, M., Langley, C., Sahakian, B.J.: Brain training using cognitive apps can improve cognitive performance and processing speed in older adults. Sci. Rep. 11(1), 1–11 (2021)
Ballesteros, S., Prieto, A., Mayas, J., Toril, P., Pita, C., Ponce de León, L., Reales, J.M., Waterworth, J.: Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial. Front. Aging Neurosci. 6, 277 (2014)
Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Nozawa, T., Kambara, T., Sekiguchi, A., Miyauchi, C.M., Kotozaki, Y., Nouchi, H.: Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial. PloS One 8(2), e55518 (2013)
Li, X., Zhang, J., Li, X.-D., Cui, W., Su, R.: Neurofeedback training for brain functional connectivity improvement in mild cognitive impairment. J. Med. Biol. Eng. 40, 484–495 (2020)
Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M.L., Rana, M., Oblak, E.: Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18(2), 86–100 (2017)
Lee, T.-S., Goh, S.J.A., Quek, S.Y., Phillips, R., Guan, C., Cheung, Y.B., Feng, L., Teng, S.S.W., Wang, C.C., Chin, Z.Y.: A brain-computer interface based cognitive training system for healthy elderly: a randomized control pilot study for usability and preliminary efficacy. PloS One 8(11), e79419 (2013)
Paszkiel, S.: Using BCI and VR technology in neurogaming. In: Analysis and Classification of EEG Signals for Brain–Computer Interfaces, pp. 93–99. Springer (2020)
Stojan, R., Voelcker-Rehage, C.: A systematic review on the cognitive benefits and neurophysiological correlates of exergaming in healthy older adults. J. Clin. Med. 8(5), 734 (2019)
Temprado, J.-J.: Can exergames be improved to better enhance behavioral adaptability in older adults? An ecological dynamics perspective. Front. Aging Neurosci. 13, 242 (2021)
Diamond, K., Mowszowski, L., Cockayne, N., Norrie, L., Paradise, M., Hermens, D.F., Lewis, S.J., Hickie, I.B., Naismith, S.L.: Randomized controlled trial of a healthy brain ageing cognitive training program: effects on memory, mood, and sleep. J. Alzheimers Dis. 44(4), 1181–1191 (2015)
Krames, E.S., Peckham, P.H., Rezai, A., Aboelsaad, F.: What is neuromodulation? In: Neuromodulation, pp. 3–8. Elsevier (2009)
Solomons, C.D., Shanmugasundaram, V.: A review of transcranial electrical stimulation methods in stroke rehabilitation. Neurol. India 67(2), 417 (2019)
Calderón, M.A.F., Jiménez, L.O., Ledesma, M.J.S.: Transcranial magnetic stimulation versus transcranial direct current stimulation as neuromodulatory techniques in stroke rehabilitation. In: Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 422–427 (2018)
DeFina, P.A., Halper, J.P., Fellus, J.L., Machado, C., Chinchilla, M., Prestigiacomo, C.J.: Neuroplasticity and neuromarker driven neuromodulation: the future path to normalizing brain function. Funct. Neurol. Rehabil. Ergon. 6(1), 27 (2016)
Waqar, M.A., Conright, K., Currie, D.R., Cate, J.C.: Technological advancements in pain management in the elderly population. Using Technol. Improve Care Older Adults 124 (2017)
Rangarajan, S.K., Suhas, S., Reddy, M.S.S., Sreeraj, V.S., Sivakumar, P.T., Venkatasubramanian, G.: Domiciliary tDCS in geriatric psychiatric disorders: opportunities and challenges. Indian J. Psychol. Med. 02537176211003666 (2021)
McACHRAN, S.E., Daneshgari, F.: Sacral neuromodulation in the older woman. Clin. Obstet. Gynecol. 50(3), 735–744 (2007)
McDonald, W.M.: Neuromodulation treatments for geriatric mood and cognitive disorders. Am. J. Geriatr. Psychiatry 24(12), 1130–1141 (2016)
Martins, A.R., Fregni, F., Simis, M., Almeida, J.: Neuromodulation as a cognitive enhancement strategy in healthy older adults: promises and pitfalls. Aging Neuropsychol. Cogn. 24(2), 158–185 (2017)
Luan, S., Williams, I., Nikolic, K., Constandinou, T.G.: Neuromodulation: present and emerging methods. Front. Neuroengineering 7, 27 (2014)
Ceresa, M., Mangado, N., Andrews, R.J., Ballester, M.A.G.: Computational models for predicting outcomes of neuroprosthesis implantation: the case of cochlear implants. Mol. Neurobiol. 52(2), 934–941 (2015)
Warwick, K.: Neuroengineering and neuroprosthetics. Brain Neurosc. Adv. 2, 2398212818817499 (2018)
Alm, N., Arnott, J.L., Dobinson, L., Massie, P., Hewines, I.: Cognitive prostheses for elderly people. In: IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat. No. 01CH37236), pp. 806–810. IEEE (2001)
Encarnação, P.: Episodic memory visualization in robot companions providing a memory prosthesis for elderly users. In: Assistive Technology: From Research to Practice, vol. 33, p. 120. AAATE (2013)
Belkacem, A.N., Jamil, N., Palmer, J.A., Ouhbi, S., Chen, C.: Brain computer interfaces for improving the quality of life of older adults and elderly patients. Front. Neurosci. 14, 692 (2020)
Panuccio, G., Semprini, M., Natale, L., Buccelli, S., Colombi, I., Chiappalone, M.: Progress in neuroengineering for brain repair: new challenges and open issues. Brain Neurosci. Adv. 2, 2398212818776475 (2018)
Lebedev, M.A., Opris, I., Casanova, M.F.: Augmentation of brain function: facts, fiction and controversy. Front. Syst. Neurosci. 12, 45 (2018)
Rosenfeld, J.V., Wong, Y.T.: Neurobionics and the brain–computer interface: current applications and future horizons. Med. J. Aust. 206(8), 363–368 (2017)
Moxon, K., Saez, I., Ditterich, J.: Mind over matter: cognitive neuroengineering. In: Cerebrum: the Dana Forum on Brain Science. Dana Foundation (2019)
Rao, R.P.: Brain Co-Processors: Using AI to Restore and Augment Brain Function (2020). arXiv:201203378
Zimerman, M., Nitsch, M., Giraux, P., Gerloff, C., Cohen, L.G., Hummel, F.C.: Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann. Neurol. 73(1), 10 (2013)
Wexler, A.: Who uses direct-to-consumer brain stimulation products, and why? A study of home users of tDCS devices. J. Cogn. Enhancement 2(1), 114–134 (2018)
Bevilacqua, R., Felici, E., Marcellini, F., Glende, S., Klemcke, S., Conrad, I., Esposito, R., Cavallo, F., Dario, P.: Robot-era project: preliminary results on the system usability. In: International Conference of Design, User Experience, and Usability, pp. 553–561. Springer (2015)
White, S.W., Richey, J.A., Gracanin, D., Bell, M.A., LaConte, S., Coffman, M., Trubanova, A., Kim, I.: The promise of neurotechnology in clinical translational science. Clin. Psychol. Sci. 3(5), 797–815 (2015)
Callahan, C.M., Foroud, T., Saykin, A.J., Shekhar, A., Hendrie, H.C.: Translational research on aging: clinical epidemiology as a bridge between the sciences. Transl. Res. 163(5), 439–445 (2014)
McDowell, K., Ries, A.A.: Translational approach to neurotechnology development. In: International Conference on Augmented Cognition, pp. 353–360. Springer (2013)
Liu, L., Stroulia, E., Nikolaidis, I., Miguel-Cruz, A., Rincon, A.R.: Smart homes and home health monitoring technologies for older adults: a systematic review. Int. J. Med. Informatics 91, 44–59 (2016)
Duval-Couetil, N., Ladisch, M., Yi, S.: Addressing academic researcher priorities through science and technology entrepreneurship education. J. Technol. Transf. 46(2), 288–318 (2021)
Gómez-López, P., Montero, F., López, M.T.: Empowering UX of elderly people with Parkinson’s disease via BCI touch. In: International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 161–170. Springer (2019)
Carroll, S., Kobayashi, K., Cervantes, M.N., Freeman, S., Saini, M., Tracey, S.: Supporting healthy aging through the scale-up, spread, and sustainability of assistive technology implementation: a rapid realist review of participatory co-design for assistive technology with older adults. Gerontol. Geriatr. Med. 7, 23337214211023268 (2021)
Vermeeren, A.P., Roto, V., Väänänen, K.: Design-inclusive UX research: design as a part of doing user experience research. Behav. Inf. Technol. 35(1), 21–37 (2016)
Privitera, M.B., Evans, M., Southee, D.: Human factors in the design of medical devices–approaches to meeting international standards in the European Union and USA. Appl. Ergon. 59, 251–263 (2017)
Kim, S.-O., Pyun, S.-B., Park, S.-A.: Improved cognitive function and emotional condition measured using electroencephalography in the elderly during horticultural activities. HortScience 1(aop), 1–10 (2021)
Kober, S.E., Reichert, J.L., Schweiger, D., Neuper, C., Wood, G.: Does feedback design matter? A neurofeedback study comparing immersive virtual reality and traditional training screens in elderly. Int. J. Serious Games 4(3) (2017)
Williams, T.J., Jones, S.L., Lutteroth, C., Dekoninck, E.: Boyd HC augmented reality and older adults: a comparison of prompting types. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2021)
Allison, B., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., Graser, A.: BCI demographics: how many (and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 107–116 (2010)
Kaiser, V., Kreilinger, A., Müller-Putz, G.R., Neuper, C.: First steps toward a motor imagery based stroke BCI: new strategy to set up a classifier. Front. Neurosci. 5, 86 (2011)
Petrushin, A., Tessadori, J., Barresi, G., Mattos, L.S.: Effect of a click-like feedback on motor imagery in EEG-BCI and eye-tracking hybrid control for telepresence. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 628–633. IEEE (2021)
Renaud, K., Van Biljon, J.: Predicting technology acceptance and adoption by the elderly: a qualitative study. In: Proceedings of the 2008 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists on IT Research in Developing Countries: Riding the Wave of Technology, pp. 210–219 (2008)
Chen, K., Chan, A.H.S.: Gerontechnology acceptance by elderly Hong Kong Chinese: a senior technology acceptance model (STAM). Ergonomics 57(5), 635–652 (2014)
Talukder, M.S., Sorwar, G., Bao, Y., Ahmed, J.U., Palash, M.A.S.: Predicting antecedents of wearable healthcare technology acceptance by elderly: a combined SEM-Neural Network approach. Technol. Forecast. Soc. Change 150, 119793 (2020)
Oh, S.-J., Ryu, J.-N.: The effect of brain-computer interface-based cognitive training in patients with dementia. J. Korean Soc. Phys. Med. 13(4), 59–65 (2018)
Spreicer, W.: Tangible interfaces as a chance for higher technology acceptance by the elderly. In: Proceedings of the 12th International Conference on Computer Systems and Technologies, pp. 311–316 (2011)
Fleury, M., Lioi, G., Barillot, C., Lécuyer, A.: A survey on the use of haptic feedback for brain-computer interfaces and neurofeedback. Front. Neurosci. 14, 528 (2020)
Škola, F., Liarokapis, F.: Embodied VR environment facilitates motor imagery brain–computer interface training. Comput. Graph. 75, 59–71 (2018)
Kuehn, E., Perez-Lopez, M.B., Diersch, N., Döhler, J., Wolbers, T., Riemer, M.: Embodiment in the aging mind. Neurosci. Biobehav. Rev. 86, 207–225 (2018)
Müller, O., Rotter, S.: Neurotechnology: current developments and ethical issues. Front. Syst. Neurosci. 11, 93 (2017)
Sundgren, S., Stolt, M., Suhonen, R.: Ethical issues related to the use of gerontechnology in older people care: a scoping review. Nurs. Ethics 27(1), 88–103 (2020)
Eijkholt, M.: Clinical neuroethics: cracking brains and healthcare systems. J. Hosp. Ethics 6(1), 74–75 (2019)
Friedman, B., Kahn, P., Borning, A.: Value sensitive design: theory and methods. University of Washington Technical Report, pp. 2–12 (2002)
Yuste, R., Goering, S., Bi, G., Carmena, J.M., Carter, A., Fins, J.J., Friesen, P., Gallant, J., Huggins, J.E., Illes, J.: Four ethical priorities for neurotechnologies and AI. Nature News 551(7679), 159 (2017)
Crivelli, D., Balconi, M.: The agent brain: a review of non-invasive brain stimulation studies on sensing agency. Front. Behav. Neurosci. 11, 229 (2017)
Bührle, C.P.: Changes in personality: possible hazards arising from chronic implantation of electrostimulation devices such as deep brain stimulation systems (DBS) or advanced electronic neuroprostheses. In: Implanted Minds. Transcript-Verlag, pp. 183–222 (2014)
Marson, F., Lasaponara, S., Cavallo, M.: A scoping review of neuromodulation techniques in neurodegenerative diseases: a useful tool for clinical practice? Medicina 57(3), 215 (2021)
Wallach, W.: From robots to techno sapiens: ethics, law and public policy in the development of robotics and neurotechnologies. Law Innov. Technol. 3(2), 185–207 (2011)
Goering, S., Klein, E., Sullivan, L.S., Wexler, A., y Arcas, B.A., Bi, G., Carmena, J.M., Fins, J.J., Friesen, P., Gallant, J.: Recommendations for responsible development and application of neurotechnologies. Neuroethics 1–22 (2021)
Earp, B.D., Sandberg, A., Kahane, G., Savulescu, J.: When is diminishment a form of enhancement? Rethinking the enhancement debate in biomedical ethics. Front. Syst. Neurosci. 8, 12 (2014)
Corcella, L., Manca, M., Nordvik, J.E., Paternò, F., Sanders, A.-M., Santoro, C.: Enabling personalisation of remote elderly assistance. Multimed. Tools Appl. 78(15), 21557–21583 (2019)
Organization, W.H.: Classification of Digital Health Interventions v1. 0: A Shared Language to Describe the Uses of Digital Technology for Health. World Health Organization (2018)
Kostkova, P.: Grand challenges in digital health. Front. Public Health 3, 134 (2015)
Recchia, G., Capuano, D.M., Mistri, N., Verna, R.: Digital therapeutics-what they are, what they will be. Acta. Sci. Med. Sci. 4, 1–9 (2020)
Dang, A., Arora, D., Rane, P.: Role of digital therapeutics and the changing future of healthcare. J. Family Med. Prim. Care 9(5), 2207 (2020)
Abbadessa, G., Brigo, F., Clerico, M., De Mercanti, S., Trojsi, F., Tedeschi, G., Bonavita, S., Lavorgna, L.: Digital therapeutics in neurology. J. Neurol. 1–16 (2021)
Kaufman, N.: Digital therapeutics: leading the way to improved outcomes for people with diabetes. Diab. Spectr. 32(4), 301–303 (2019)
Kaldy, J.: Digital therapeutics: health care wired for the future. Senior Care Pharmacist 35(8), 338–344 (2020)
Bevilacqua, R., Casaccia, S., Cortellessa, G., Astell, A., Lattanzio, F., Corsonello, A., D’ascoli, P., Paolini, S., Di Rosa, M., Rossi, L.: Coaching through technology: a systematic review into efficacy and effectiveness for the ageing population. Int. J. Environ. Res. Public Health 17(16), 5930 (2020)
Khelassi, A., Estrela, V.V., Monteiro, A.C.B., França, R.P., Iano, Y., Razmjooy, N.: Health 4.0: applications, management, technologies and review. Med. Technol. J. (2019)
Chang, C.-J., Yang, T.-F., Yang, S.-W., Chern, J.-S.: Cortical modulation of motor control biofeedback among the elderly with high fall risk during a posture perturbation task with augmented reality. Front. Aging Neurosci. 8, 80 (2016)
Wright, J.M., Regele, O.B., Kourtis, L.C., Pszenny, S.M., Sirkar, R., Kovalchick, C., Jones, G.B.: Evolution of the digital biomarker ecosystem. Digit. Med. 3(4), 154 (2017)
Cavedoni, S., Chirico, A., Pedroli, E., Cipresso, P., Riva, G.: Digital biomarkers for the early detection of mild cognitive impairment: artificial intelligence meets virtual reality. Front. Human Neurosci. 14 (2020)
Rutkowski, T.M., Zhao, Q., Abe, M.S., Otake, M.: AI Neurotechnology for Aging Societies--Task-load and Dementia EEG Digital Biomarker Development Using Information Geometry Machine Learning Methods (2018). arXiv:181112642
Ansado, J., Chasen, C., Bouchard, S., Northoff, G.: How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive training. Neurosci. Biobehav. Rev. 120, 583–594 (2021)
Sue, F.-M., Chang, Y.-S., Sheu, R.-K.: A platform for fusing psychological and physiological data from hybrid cloud. In: 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), pp. 1–6. IEEE (2016)
Tomassini C 5.5 National report: Ageing And Technologies, Italy, vol 165
Berger, R.P., Houle, J.-F., Hayes, R.L., Wang, K.K., Mondello, S., Bell, M.J.: Translating biomarkers research to clinical care: applications and issues for rehabilomics. PM&R 3(6), S31–S38 (2011)
Dryden, E., Sahal, M., Feldman, S., Ayaz, H., Heiman-Patterson, T.: Amyotrophic lateral sclerosis disease progression presents difficulties in brain computer interface use. In: International Conference on Applied Human Factors and Ergonomics, pp. 70–77. Springer (2021)
Tun, S.Y.Y., Madanian, S., Mirza, F.: Internet of things (IoT) applications for elderly care: a reflective review. Aging Clin. Exp. Res. 33(4), 855–867 (2021)
Pal, D., Funilkul, S., Charoenkitkarn, N., Kanthamanon, P.: Internet-of-things and smart homes for elderly healthcare: an end user perspective. IEEE Access 6, 10483–10496 (2018)
Azimi, I., Rahmani, A.M., Liljeberg, P., Tenhunen, H.: Internet of things for remote elderly monitoring: a study from user-centered perspective. J. Ambient. Intell. Humaniz. Comput. 8(2), 273–289 (2017)
Marques, G.: Ambient assisted living and internet of things. In: Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities, pp. 100–115 (2019)
Andrade, T., Bastos, D.: Extended reality in IoT scenarios: concepts, applications and future trends. In: 5th Experiment International Conference (exp. at'19), pp. 107–112. IEEE (2019)
Amorim, P., Santos, B.S., Dias, P., Silva, S., Martins, H.: Serious games for stroke telerehabilitation of upper limb-a review for future research. Int. J. Telerehabilitation 12(2), 65–76 (2020)
Elayan, H., Aloqaily, M., Guizani, M.: Digital twin for intelligent context-aware IoT healthcare systems. IEEE Internet Things J. (2021)
Miraz, M.H., Ali, M., Excell, P.S., Picking, R.A.: Review on Internet of Things (IoT), Internet of everything (IoE) and Internet of nano things (IoNT). In: Internet Technologies and Applications (ITA), pp. 219–224. IEEE 2015
Javaid, M., Khan, I.H.: Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 pandemic. J. Oral Biol. Craniofac. Res. 11(2), 209–214 (2021)
DiGiovanni, G., Mousaw, K., Lloyd, T., Dukelow, N., Fitzgerald, B., D’Aurizio, H., Loh, K.P., Mohile, S., Ramsdale, E., Maggiore, R.: Development of a telehealth geriatric assessment model in response to the COVID-19 pandemic. J. Geriatr. Oncol. 11(5), 761–763 (2020)
Vishnu, S., Ramson, S.J., Jegan, R.: Internet of medical things (IoMT)-an overview. In: 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), pp. 101–104. IEEE 2020
Meng, W., Cai, Y., Yang, L.T., Chiu, W.-Y.: Hybrid emotion-aware monitoring system based on brainwaves for internet of medical things. IEEE Internet Things J. (2021)
Elmalaki, S., Demirel, B.U., Taherisadr, M., Stern-Nezer, S., Lin, J.J., Al Faruque, M.A.: Towards internet-of-things for wearable neurotechnology. In: 22nd International Symposium on Quality Electronic Design (ISQED), pp. 559–565. IEEE (2021)
Shirke, B., Wong, J., Libut, J.C., George, K., Oh, S.J.: Brain-IoT based emotion recognition system. In: 10th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0991–0995. IEEE (2020)
Schiliro, F., Moustafa, N., Beheshti, A.: Cognitive privacy: AI-enabled privacy using EEG signals in the internet of things. In: 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys), pp. 73–79. IEEE, (2020)
Maiti, M., Ghosh, U.: Next generation internet of things in fintech ecosystem. IEEE Internet Things J. (2021)
Yu, B., Hu, J., Funk, M., Feijs, L.: DeLight: biofeedback through ambient light for stress intervention and relaxation assistance. Pers. Ubiquit. Comput. 22(4), 787–805 (2018)
Swan, M., Kido, T.: Ruckenstein M BRAINY–multi-modal brain training app for Google glass: cognitive enhancement, wearable computing, and the Internet-of-Things extend personal data analytics. In: Workshop on Personal Data Analytics in the Internet of Things 40th International Conference on Very Large Databases (2014)
Miralles, F., Vargiu, E., Rafael-Palou, X., Solà, M., Dauwalder, S., Guger, C., Hintermüller, C., Espinosa, A., Lowish, H., Martin, S.: Brain–computer interfaces on track to home: results of the evaluation at disabled end-users’ homes and lessons learnt. Front. ICT 2, 25 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Barresi, G., Zenzeri, J., Tessadori, J., Laffranchi, M., Semprini, M., De Michieli, L. (2022). Neuro-Gerontechnologies: Applications and Opportunities. In: Scataglini, S., Imbesi, S., Marques, G. (eds) Internet of Things for Human-Centered Design. Studies in Computational Intelligence, vol 1011. Springer, Singapore. https://doi.org/10.1007/978-981-16-8488-3_7
Download citation
DOI: https://doi.org/10.1007/978-981-16-8488-3_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-8487-6
Online ISBN: 978-981-16-8488-3
eBook Packages: EngineeringEngineering (R0)