Skip to main content

Exoskeletons in Elderly Healthcare

  • 315 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 1011)

Abstract

The older population is projected to quadruple between the years 2000 and 2050. Many of the elderly experience mobility impairments of varying degrees. These are caused by a physiological muscular decay or associated health conditions, such as stroke, which shows an increasing rate of incidence with the age of the subject. The introduction of exoskeletons in elderly healthcare scenarios, derived from the rehabilitation one, is becoming a promising approach. The opportunities and advantages of these systems in healthcare are of great interest. Most widely used systems are stationary, improving the outcomes of traditional approaches of rehabilitation. Fewer fully wearable systems are being used due to their cost, complexity, weight and performance. However, big steps have been done in the last years to improve them. The potential use of wearable untethered systems or exosuits in home environments opens new possibilities, especially in daily healthcare, promoting mobility and an active life. To promote exoskeleton’s use, usability and acceptability are central factors in elderly healthcare scenario. This includes not only technical characteristics of the device (such as weight or level of assistance), but also aesthetics and compatibility with everyday activities. Considerable developments have been achieved in the area of user experience, mostly thanks to the use of industrial design and Human-Centered Design—HCD principles. These approaches put great emphasis in keeping the users in the design loop, ensuring that technical developments are focused on their real needs. Additionally, an effective use of the exoskeletons in unstructured environments requires to process information on the context and the activity being performed, enabling assistance in Activities of Daily Living—ADL. This can be done relying on the growing trend of wearable sensors and Internet of Things—IoT, exploiting the paradigm of ubiquitous computing, cloud storage, and intuitive human-machine interaction.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8488-3_17
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8488-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. D. o. E. United Nations and S. Affairs: World population ageing 2017 highlights. Last accessed on 11 Mar 2021 (2017)

    Google Scholar 

  2. Richardson, C.A., Glynn, N.W., Ferrucci, L.G., Mackey, D.C.: Walking energetics, fatigability, and fatigue in older adults: the study of energy and aging pilot. J. Gerontol Series A: Biomed. Sci. Med. Sci. 70(4), 487–494 (2015)

    CrossRef  Google Scholar 

  3. Graf, B.: An adaptive guidance system for robotic walking aids. J. Comput. Inf. Technol. 17(1), 109–120 (2009)

    CrossRef  Google Scholar 

  4. Charron, P.M., Kirby, R.L., MacLeod, D.: Epidemiology of walker-related injuries and deaths in the United States (1995)

    Google Scholar 

  5. Priplata, A.A., Niemi, J.B., Harry, J.D., Lipsitz, L.A., Collins, J.J.: Vibrating insoles and balance control in elderly people. lancet 362(9390), 1123–1124 (2003)

    CrossRef  Google Scholar 

  6. Martini, E., Crea, S., Parri, A., Bastiani, L., Faraguna, U., McKinney, Z., Molino-Lova, R., Pratali, L., Vitiello, N.: Gait training using a robotic hip exoskeleton improves metabolic gait efficiency in the elderly. Sci. Rep. 9, 1–12 (2019)

    Google Scholar 

  7. S´eguin, E., Doumit, M.: Review and assessment of walking assist ex-´ oskeleton knee joints. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, pp. 1230–1235 (2020)

    Google Scholar 

  8. Kekade, S., Hseieh, C.-H., Islam, M.M., Atique, S., Khalfan, A.M., Li, Y.-C., Abdul, S.S.: The usefulness and actual use of wearable devices among the elderly population. Comput. Methods Programs Biomed. 153, 137–159 (2018)

    Google Scholar 

  9. Tuckson, R.V., Edmunds, M., Hodgkins, M.L.: Telehealth. N. Engl. J. Med. 377, 1585–1592 (2017)

    CrossRef  Google Scholar 

  10. Sanders, E.B.-N.: From user-centered to participatory design approaches. In: Design and the social sciences, pp. 18–25, CRC Press (2002)

    Google Scholar 

  11. Power, V., de Eyto, A., Hartigan, B., Ortiz, J., O’Sullivan, L.W.: Application of a user-centered design approach to the development of xosoft—a lower body soft exoskeleton. In: International Symposium on Wearable Robotics, Springer, pp. 44–48 (2018)

    Google Scholar 

  12. J. L. Pons, Wearable robots: biomechatronic exoskeletons. Wiley (2008)

    Google Scholar 

  13. Toxiri, S., N¨af, M.B., Lazzaroni, M., Fern´andez, J., Sposito, M., Poliero, T., Monica, L., Anastasi, S., Caldwell, D.G., Ortiz, J.: Back-support exoskeletons for occupational use: an overview of technological advances and trends. IISE Trans. Occup. Ergonomics Human Factors 7(3–4), 237–249 (2019)

    Google Scholar 

  14. Bogue, R.: Exoskeletons and robotic prosthetics: a review of recent developments. Ind. Robot: Int. J. (2009)

    Google Scholar 

  15. Nussbaum, M.A., Lowe, B.D. de Looze, M., Harris-Adamson, C., Smets, M.: An introduction to the special issue on occupational exoskeletons (2019)

    Google Scholar 

  16. Proud, J.K., Lai, D.T., Mudie, K.L., Carstairs, G.L., Billing, D.C., Garofolini, A., Begg, R.K.: Exoskeleton application to military manual handling tasks. Human Factors 0018720820957467 (2020)

    Google Scholar 

  17. Kermavnar, T., de Vries, A.W., de Looze, M.P., O’Sullivan, L.W.: Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review. Ergonomics 1–48 (2020)

    Google Scholar 

  18. Gull, M.A., Bai, S., Bak, T.: A review on design of upper limb exoskeletons. Robotics 9(1), 16 (2020)

    CrossRef  Google Scholar 

  19. Toxiri, S., Anastasi, S.: Occupational exoskeletons: a new challenge for human factors, ergonomics and safety disciplines in the workplace of the future. In: Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume IV: Healthcare and Healthy Work, vol. 222, p. 118, Springer (2021)

    Google Scholar 

  20. Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans. Rob. 24(1), 144–158 (2008)

    CrossRef  Google Scholar 

  21. Kapsalyamov, A., Jamwal, P.K., Hussain, S., Ghayesh, M.H.: State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access 7, 95075–95086 (2019)

    CrossRef  Google Scholar 

  22. Shi, D., Zhang, W., Zhang, W., Ding, X.: A review on lower limb rehabilitation exoskeleton robots. Chin. J. Mech. Eng. 32(1), 1–11 (2019)

    CrossRef  Google Scholar 

  23. Thalman, C., Artemiadis, P: A review of soft wearable robots that provide active assistance: trends, common actuation methods, fabrication, and applications. Wearable Technol. 1 (2020)

    Google Scholar 

  24. Rocon, E., Pons, J.L.: Exoskeletons in rehabilitation robotics: Tremor suppression, vol. 69. Springer (2011)

    Google Scholar 

  25. Lim, D.-H., Kim, W.-S., Kim, H.-J., Han, C.-S.: Development of real-time gait phase detection system for a lower extremity exoskeleton robot. Int. J. Precis. Eng. Manuf. 18(5), 681–687 (2017)

    CrossRef  Google Scholar 

  26. Khan, A.M., Yun, D.-W., Zuhaib, K.M., Iqbal, J., Yan, R.-J., Khan, F., Han, C.: Estimation of desired motion intention and compliance control for upper limb assist exoskeleton. Int. J. Control Autom. Syst. 15(2), 802–814 (2017)

    CrossRef  Google Scholar 

  27. Recher, F., Banos, O., Nikamp, C.D., Schaake, L., Baten, C.T., Buurkc, J.H.: Optimizing activity recognition in stroke survivors for wearable exoskeletons. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 173–178, IEEE (2018)

    Google Scholar 

  28. Poliero, T., Mancini, L., Caldwell, D.G., Ortiz, J.: Enhancing back-support exoskeleton versatility based on human activity recognition. In: 2019 Wearable Robotics Association Conference (WearRAcon), pp. 86–91, IEEE (2019)

    Google Scholar 

  29. Jamˇsek, M., Petriˇc, T., Babiˇc, J.: Gaussian mixture models for control of quasi-passive spinal exoskeletons. Sensors 20(9), 2705 (2020)

    CrossRef  Google Scholar 

  30. Porta, M., Kim, S., Pau, M., Nussbaum, M.A.: Classifying diverse manual material handling tasks using a single wearable sensor. Appl. Ergonomics 93, 103386 (2021)

    Google Scholar 

  31. Huysamen, K., Bosch, T., de Looze, M., Stadler, K.S., Graf, E., O’Sullivan, L.W.: Evaluation of a passive exoskeleton for static upper limb activities. Appl. Ergon. 70, 148–155 (2018)

    CrossRef  Google Scholar 

  32. Toxiri, S., Koopman, A.S., Lazzaroni, M., Ortiz, J., Power, V., de Looze, M.P., O’Sullivan, L., Caldwell, D.G.: Rationale, implementation and evaluation of assistive strategies for an active back-support exoskeleton. Front. Robot. AI 5, 53 (2018)

    CrossRef  Google Scholar 

  33. Diller, S., Majidi, C., Collins, S.H.: A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 682–689, IEEE (2016)

    Google Scholar 

  34. Binder, T., De Michelis, G., Ehn, P., Jacucci, G., Linde, P., Wagner, I.: Participation in design things. In: Design Things, The MIT Press (2011)

    Google Scholar 

  35. Bannon, L.J.: From human factors to human actors: the role of psychology and human-computer interaction studies in system design. In: Readings in Human–Computer Interaction, pp. 205–214 (1995)

    Google Scholar 

  36. Anderson, N.S., Norman, D.A., Draper, S.W.: User centered system design: new perspectives on human-computer interaction. Am. J. Psychol. (1988)

    Google Scholar 

  37. Abras, C., Maloney-Krichmar, D., et al.: User-centered design. Bainbridge (2004)

    Google Scholar 

  38. Ortiz, J., Di Natali, C., Caldwell, D.G.: Xosoft-iterative design of a modular soft lower limb exoskeleton. In: International Symposium on Wearable Robotics, pp. 351–355, Springer (2018)

    Google Scholar 

  39. Poliero, T., Di Natali, C., Sposito, M., Ortiz, J., Graf, E., Pauli, C., Bottenberg, E., De Eyto, A., Caldwell, D.G.: Soft wearable device for lower limb assistance: assessment of an optimized energy efficient actuation prototype. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp. 559–564, IEEE (2018)

    Google Scholar 

  40. Totaro, M., Poliero, T., Mondini, A., Lucarotti, C., Cairoli, G., Ortiz, J., Beccai, L.: Soft smart garments for lower limb joint position analysis. Sensors 17(10), 2314 (2017)

    CrossRef  Google Scholar 

  41. De Rossi, S.M., Crea, S., Donati, M., Reberˇsek, P., Novak, D., Vitiello, N., Lenzi, T., Podobnik, J., Munih, M., Carrozza, M.C.: Gait segmentation using bipedal foot pressure patterns. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 361–366, IEEE (2012)

    Google Scholar 

  42. Hrones, J.A., Nelson, G.L.: Analysis of the four-bar linkage: its application to the synthesis of mechanisms. Published jointly by the Technology Press of the Massachusetts Institute of Technology, Wiley, New York (1951)

    Google Scholar 

  43. Kermavnar, T., Power, V., de Eyto, A., O’Sullivan, L.W.: Computerized cuff pressure algometry as guidance for circumferential tissue compression for wearable soft robotic applications: a systematic review. Soft Rob. 5(1), 1–16 (2018)

    CrossRef  Google Scholar 

  44. Sadeghi, A., Mondini, A., Mazzolai, B.: Preliminary experimental study on variable stiffness structures based on textile jamming for wearable robotics. In: International Symposium on Wearable Robotics, pp. 49–52, Springer (2018)

    Google Scholar 

  45. Sposito, M., Poliero, T., Di Natali, C., Ortiz, J., Pauli, C., Graf, E., De Eyto, A., Bottenberg, E., Caldwell, D.: Evaluation of xosoft beta-1 lower limb exoskeleton on a post stroke patient. In: Sixth National Congress of Bioengineering (Milan) (2018)

    Google Scholar 

  46. Di Natali, C., Poliero, T., Sposito, M., Graf, E., Bauer, C., Pauli, C., Bottenberg, E., De Eyto, A., O’Sullivan, L., Hidalgo, A.F., et al.: Design and evaluation of a soft assistive lower limb exoskeleton. Robotica 37(12), 2014–2034 (2019)

    CrossRef  Google Scholar 

  47. Graf, E., Bauer, C., Schu¨lein, S., de Eyto, A., Power, V., Bottenberg, E., Weyermann, B., O’Sullivan, L., Wirz, M.: Assessing usability of a prototype soft exoskeleton by involving people with gait impairments. In: World Confederation for Physical Therapy Congress (WCPT), Geneva, 1013 May 2019, ZHAW Zu¨rcher Hochschule fu¨r Angewandte Wissenschaften (2019)

    Google Scholar 

  48. Schuelein, S, Gassmann, K.-G.: “xosoft” a soft-exoskeleton for people with moderate gait insecurities. In: ZEITSCHRIFT FUR GERONTOLOGIE UND GERIATRIE, vol. 50, pp. S138–S138, Springer Heidelberg TIERGARTENSTRASSE 17, D-69121 Heidelberg, Germany (2017)

    Google Scholar 

  49. Shore, L., Power, V., Hartigan, B., Schu¨lein, S., Graf, E., de Eyto, A., O’Sullivan, L.: Exoscore: a design tool to evaluate factors associated with technology acceptance of soft lower limb exosuits by older adults. Human Factors 62(3), 391–410 (2020)

    Google Scholar 

  50. Vassallo, C., De Giuseppe, S., Piezzo, C., Maludrottu, S., Cerruti, G.M. L. D’Angelo, E. Gruppioni, C. Marchese, S. Castellano, E. Guanziroli, F. Molteni, M. Laffranchi, De Michieli, L.: Gait patterns generation based on basis functions interpolation for the twin lower-limb exoskeleton*. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1778–1784 (2020)

    Google Scholar 

  51. Eic 60601 medical electrical equipment (2021)

    Google Scholar 

  52. Verrusio, W., Renzi, A., Ripani, M., Cacciafesta, M.: An exoskeleton in the rehabilitation of institutionalized elderly patients at high risk of falls: a pilot study. J. Am. Med. Dir. Assoc. 19(9), 807–809 (2018)

    CrossRef  Google Scholar 

  53. Kim, B.R., Kwon, H., Chun, M.Y., Park, K.D., Lim, S.M., Jeong, J.H., Kim, G.H.: White matter integrity is associated with the amount of physical activity in older adults with super-aging. Frontiers in Aging Neuroscience 12, 294 (2020)

    Google Scholar 

  54. Shore, L., Power, V., de Eyto, A., O’Sullivan, L.W.: Technology acceptance and user-centred design of assistive exoskeletons for older adults: a commentary. Robotics 7(1) (2018)

    Google Scholar 

  55. Azjen, I.: Understanding attitudes and predicting social behavior. Englewood Cliffs (1980)

    Google Scholar 

  56. Ajzen, I.: From intentions to actions: a theory of planned behavior. In: Action control, pp. 11–39, Springer (1985)

    Google Scholar 

  57. Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: Theory and results. PhD thesis, Massachusetts Institute of Technology (1985)

    Google Scholar 

  58. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Quarterly 425–478 (2003)

    Google Scholar 

  59. Heerink, M., Kr¨ose, B., Evers, V., Wielinga, B.: Assessing acceptance of assistive social agent technology by older adults: the almere model. Int. J. Soc. Robot. 2(4), 361–375 (2010)

    Google Scholar 

  60. Chen, K., Chan, A.H.S.: Gerontechnology acceptance by elderly hong kong chinese: a senior technology acceptance model (stam). Ergonomics 57(5), 635–652 (2014)

    CrossRef  Google Scholar 

  61. Latikka, R., Turja, T., Oksanen, A.: Self-efficacy and acceptance of robots. Comput. Hum. Behav. 93, 157–163 (2019)

    CrossRef  Google Scholar 

  62. Shore, L., Power, V., Hartigan, B., Schu¨lein, S., Graf, E., de Eyto, A., O’Sullivan, L.: Exoscore: a design tool to evaluate factors associated with technology acceptance of soft lower limb exosuits by older adults. Human Factors (2019)

    Google Scholar 

  63. Shore, L., de Eyto, A., O’Sullivan, L.: Technology acceptance and perceptions of robotic assistive devices by older adults–implications for exoskeleton design. Disabil. Rehabil.: Assistive Technol. 1–9 (2020)

    Google Scholar 

  64. Hill, D., Holloway, C.S., Ramirez, D.Z.M., Smitham, P., Pappas, Y.: What are user perspectives of exoskeleton technology? A literature review (2017)

    Google Scholar 

  65. Jung, M.M., Ludden, G.D.: What do older adults and clinicians think about traditional mobility aids and exoskeleton technology? ACM Trans. Human-Robot Interact (THRI) 8(2), 1–17 (2019)

    CrossRef  Google Scholar 

  66. Mortenson, W.B., Pysklywec, A., Chau, L., Prescott, M., Townson, A.: Therapists’ experience of training and implementing an exoskeleton in a rehabilitation centre. Disabil. Rehabil. 1–7 (2020)

    Google Scholar 

  67. Reed, T., Tuckson, V., Edmunds, M., Hodgkins, M.L.: (No Title). Tech. Rep. (2017)

    Google Scholar 

  68. Chang, M.C., Boudier-Rev´eret, M.: Usefulness of telerehabilitation for stroke patients during the covid-19 pandemic. Am. J. Phys. Med. Rehabil. (2020)

    Google Scholar 

  69. Prvu Bettger, J., Resnik, L.J.: Telerehabilitation in the age of covid19: an opportunity for learning health system research. Phys. Ther. 100(11), 1913–1916 (2020)

    Google Scholar 

  70. Leochico, C.F.D.: Adoption of telerehabilitation in a developing country before and during the covid-19 pandemic. Annals Phys. Rehabil. Med. (2020)

    Google Scholar 

  71. De Marchi, F., Contaldi, E., Magistrelli, L., Cantello, R., Comi, C., Mazzini, L.: Telehealth in neurodegenerative diseases: opportunities and challenges for patients and physicians. Brain Sci. 11(2), 237 (2021)

    CrossRef  Google Scholar 

  72. Dabiri, F., Massey, T., Noshadi, H., Hagopian, H., Lin, C., Tan, R., Schmidt, J., Sarrafzadeh, M.: A telehealth architecture for networked embedded systems: a case study in in vivo health monitoring. IEEE Trans. Inf Technol. Biomed. 13(3), 351–359 (2009)

    CrossRef  Google Scholar 

  73. Atashzar, S.F., Carriere, J., Tavakoli, M.: Review: how can intelligent robots and smart mechatronic modules facilitate remote assessment, assistance, and rehabilitation for isolated adults with Neuro-Musculoskeletal conditions? (Apr 2021)

    Google Scholar 

  74. Baten, C.T., de Vries, W., Schaake, L., Witteveen, J., Scherly, D., Stadler, K., Sanchez, A.H., Rocon, E., Bos, D.P.O., Linssen, J.: XoSoft connected monitor (XCM) unsupervised monitoring and feedback in soft exoskeletons of 3D kinematics, kinetics, behavioral context and control system status. In: Biosystems and Biorobotics, vol. 22, pp. 391–395, Springer International Publishing (Oct 2019)

    Google Scholar 

  75. Dodd, C., Athauda, R., Adam, M.: Designing user interfaces for the elderly: a systematic literature review (2017)

    Google Scholar 

  76. Rot, A., Kutera, R., Gryncewicz, W.: Design and assessment of user interface optimized for elderly people. a case study of actgo-gate platform. In: ICT4AgeingWell, 157–163 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Sposito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sposito, M. et al. (2022). Exoskeletons in Elderly Healthcare. In: Scataglini, S., Imbesi, S., Marques, G. (eds) Internet of Things for Human-Centered Design. Studies in Computational Intelligence, vol 1011. Springer, Singapore. https://doi.org/10.1007/978-981-16-8488-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8488-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8487-6

  • Online ISBN: 978-981-16-8488-3

  • eBook Packages: EngineeringEngineering (R0)