J. Johnson, Number of e-mails per day worldwide 2017–2025. Statista (2021). https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/. Accessed 01 March 2021
H. Mohammadzadeh, F.S. Gharehchopogh, A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: case study email spam detection. Comput. Intell. 37(1), 176–209 (2021). https://doi.org/10.1111/coin.12397
MathSciNet
CrossRef
Google Scholar
H. Faris et al., An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Inf. Fusion 48(August), 67–83 (2019). https://doi.org/10.1016/j.inffus.2018.08.002
CrossRef
Google Scholar
M. Zhiwei, M.M. Singh, Z.F. Zaaba, Email spam detection: a method of metaclassifiers stacking. Int. Conf. Comput. Informatics 200, 750–757 (2017)
Google Scholar
A. Bhowmick, S.M. Hazarika, Machine learning for e-mail spam filtering: review, techniques and trends, June 2016. http://arxiv.org/abs/1606.01042
E.G. Dada, J.S. Bassi, H. Chiroma, S.M. Abdulhamid, A.O. Adetunmbi, O.E. Ajibuwa, Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 5(6) (2019). https://doi.org/10.1016/j.heliyon.2019.e01802
E.Y. Desta, Spam email detection on data mining: a review. J. Inf. Eng. Appl. 9(2), 1–4 (2019). https://doi.org/10.7176/jiea/9-2-01
CrossRef
Google Scholar
S.K. Trivedi, S. Dey, Interplay between probabilistic classifiers and boosting algorithms for detecting complex unsolicited emails. J. Adv. Comput. Networks 1(2), 132–136 (2013). https://doi.org/10.7763/JACN.2013.V1.27
CrossRef
Google Scholar
M. Bassiouni, M. Ali, E.A. El-Dahshan, Ham and spam e-mails classification using machine learning techniques. J. Appl. Secur. Res. 13(3), 315–331 (2018). https://doi.org/10.1080/19361610.2018.1463136
CrossRef
Google Scholar
K. Agarwal, T. Kumar, Email spam detection using integrated approach of Naïve Bayes and particle swarm optimization, in Proceedings of the 2nd International Conference on Intelligent Computing and Control Systems, ICICCS 2018, June 2018 (2019), pp. 685–690. https://doi.org/10.1109/ICCONS.2018.8662957
D. Gaurav, S.M. Tiwari, A. Goyal, N. Gandhi, A. Abraham, Machine intelligence-based algorithms for spam filtering on document labeling. Soft Comput. 24(13), 9625–9638 (2020). https://doi.org/10.1007/s00500-019-04473-7
CrossRef
Google Scholar
S. Douzi, F.A. AlShahwan, M. Lemoudden, B. El Ouahidi, Hybrid email spam detection model using artificial intelligence. Int. J. Mach. Learn. Comput. 10(2), 316–322 (2020). https://doi.org/10.18178/ijmlc.2020.10.2.937
CrossRef
Google Scholar
U.K. Sah, N. Parmar, An approach for malicious spam detection in email with comparison of different classifiers. Int. Res. J. Eng. Technol. 4(8), 2238–2242 (2017). https://irjet.net/archives/V4/i8/IRJET-V4I8404.pdf
R.N. Khushaba, A. Al-Ani, A. Alsukker, A. Al-Jumaily, A combined ant colony and differential evolution feature selection algorithm. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 5217 (LNCS, 2008), pp. 1–12. https://doi.org/10.1007/978-3-540-87527-7_1
J. Huang, Y. Cai, X. Xu, A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recogn. Lett. 28(13), 1825–1844 (2007). https://doi.org/10.1016/j.patrec.2007.05.011
CrossRef
Google Scholar
A.I. Sharaf, M. Abu, I. El-Henawy, A feature selection algorithm based on mutual information using local non-uniformity correction estimator. Int. J. Adv. Comput. Sci. Appl. 8(6) (2017). https://doi.org/10.14569/ijacsa.2017.080656
X. Wang, B. Guo, Y. Shen, C. Zhou, X. Duan, Input feature selection method based on feature set equivalence and mutual information gain maximization. IEEE Access 7, 151525–151538 (2019). https://doi.org/10.1109/ACCESS.2019.2948095
CrossRef
Google Scholar
A. El Akadi, A. El Ouardighi, D. Aboutajdine, A powerful feature selection approach based on mutual information. Int. J. Comput. Sci. Netw. Secur. 8(4), 116–121 (2008). http://paper.ijcsns.org/07_book/200804/20080417.pdf
S. Verron, T. Tiplica, A. Kobi, Fault detection and identification with a new feature selection based on mutual information. J. Process Control 18(5), 479–490 (2008). https://doi.org/10.1016/j.jprocont.2007.08.003
CrossRef
Google Scholar
B. Biswas, Email spam classification dataset CSV (2020). https://www.kaggle.com/balaka18/email-spam-classification-dataset-csv. Accessed 1 Feb 2021