Skip to main content

An Overview on Biological Evaluation of Tetrazole Derivatives

  • Chapter
  • First Online:
Nanostructured Biomaterials

Abstract

Tetrazoles are distinguished by a five-membered, doubly unsaturated ring which consists of four nitrogen and one carbon atom with a molecular formula CN4H2, which have a wide range of medicinal activity and potential role in biosciences. Interest in tetrazole chemistry in recent decades has been increasing rapidly because of diverse biological and pharmaceutical applications, mostly due to the diversity of this N-heterocyclic moiety in medicinal chemistry. This moiety offers a more appreciative pharmacokinetic profile and plays the role of metabolically stable substitute for carboxylic acid functional group as well as exhibits a broad range of biological effects such as analgesic, antibacterial, anticancer, anti-inflammatory, antidiabetic, antifungal, antitubercular and antihyperlipidemic activities. This chapter highlights the unique features of the potential possible role of tetrazole derivatives and summarizes biological and pharmacological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

U.S. FDA:

United States Food and Drug Administration

HIV:

Human Immunodeficiency Virus

ARB:

Angiotensin II receptor blocker

DNA:

Deoxyribonucleic Acid

HMG-CoA:

3-hydroxy-3-methyl-glutaryl-coenzyme A

COX:

Cyclooxygenase

GABA:

Gamma-Aminobutyric Acid

ABSSSI:

Acute Bacterial Skin and skin structure infection

ADP:

Adenosine di-phosphate

AMP:

Adenosine monophosphate

PARP:

poly(ADP-ribose)polymerase

RNA:

Ribonucleic Acid

SAR:

Structure–Activity Relationship

NS3:

Non-structural protein 3

AIDS:

Acquired Immune Deficiency Syndrome

MRSA:

Methicillin-resistant Staphylococcus aureus

WHO:

World Health Organization

HSV:

Herpes Simplex Viruses

ER:

Endoplasmic Reticulum

DNMT:

DNA methyltransferases

HepG-2:

Human liver cancer cell line

OGTT:

Oral Glucose Tolerance Test

References

  1. Mohite PB, Bhaskar VH (2001) Potential pharmacological activities of tetrazoles in the new millennium. Int J Pharm Tech Res 3:1557–1566

    Google Scholar 

  2. Ostrovskii VA, Trifonov RE, Popova EA (2012) Medicinal chemistry of tetrazoles. Russ Chem Bull 61:768–780

    CAS  Google Scholar 

  3. Herr RJ (2002) 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem 10:3379–3393

    CAS  Google Scholar 

  4. Sureshbabu VV, Venkataramanarao R, Naik SA, Chennakrishnareddy G (2007) Synthesis of tetrazole analogues of amino acids using Fmoc chemistry: isolation of amino free tetrazoles and their incorporation into peptides. Tetrahedron Lett 48:7038–7041

    CAS  Google Scholar 

  5. Modarresi-Alam AR, Khamooshi F, Rostamizadeh M, Keykha H, Nasrollahzadeh M, Bijanzadeh HR, Kleinpeter E (2007) Dynamic 1H NMR spectroscopic study of the restricted SN rotation in aryl-N-(arylsulfonyl)-N-(triphenylphosphoranylidene) imidocarbamates. J Mol Struct 841:61–66

    CAS  Google Scholar 

  6. Manzoor S, Tariq Q, Yin X, Zhang J-G (2021) Nitro-tetrazole based high performing explosives: recent overview of synthesis and energetic properties. Def Technol. https://doi.org/10.1016/j.dt.2021.02.002

    Article  Google Scholar 

  7. Husain A, Azim MS, Mitra M, Bhasin PS (2011) A review on candesartan: pharmacological and pharmaceutical profile. J Appl Pharm Sci 01:12–17

    Google Scholar 

  8. Weintraub WS (2006) The vascular effects of cilostazol. Can J Cardiol 22:56–60

    Google Scholar 

  9. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    Google Scholar 

  10. Basile J (2010) Critical appraisal of amlodipine and olmesartanmedoxomil fixed-dose combination in achieving blood pressure goals. Integr Blood Press Control 3:91–104

    CAS  Google Scholar 

  11. Ostrovskii VA, Koldobskii GI, Trifonov RE (2008) Reference module in chemistry, molecular sciences and chemical engineering. Comp HeterocyclChem III 6:257–423

    Google Scholar 

  12. Le Bourdonnec B, Meulon E, Yous S, Goossens JF, Houssin R, Hénichart JP (2000) Synthesis and pharmacological evaluation of new pyrazolidine-3, 5-diones as AT (1) angiotensin II receptor antagonists. J Med Chem 43:2685–2697

    Google Scholar 

  13. Kurup A, Gard R, Carini DJ, Hansch C (2001) Comparative QSAR: angiotensin II antagonists. Chem Rev 101:2727–2750

    CAS  Google Scholar 

  14. Wu J, Wang Q, Guo J, Hu Z, Yin Z, Xu J, Wu X (2008) Characterization of angiotensin II antagonism displayed by Ib, a novel nonpeptide angiotensin AT (1) receptor antagonist. Eur J Pharmacol 589:220–224

    CAS  Google Scholar 

  15. Yan B, Wang G, Sun J, Li X, Zheng Y, Ai H, Lv H, Wu X, Xu J (2007) Identification of the major metabolites of 5-n-butyl-4-{4-[2-(1H-tetrazole-5-yl)-1H-pyrrol-1-yl]phenylmethyl}-2,4-dihydro-2-(2,6-dichloridephenyl)-3H-1,2,4-triazol-3-one, a new angiotensin type 1 receptor antagonist, in rat bile by HPLC-diode array detection-MS and HPLC-MS/MS. Biomed Chromatogr 21:912–924

    CAS  Google Scholar 

  16. Kim JH, Lee JH, Paik SH, Kim JH, Chi YH (2012) Fimasartan, a novel angiotensin II receptor antagonist. Arch Pharmacal Res 35:1123–1126

    CAS  Google Scholar 

  17. Choi MJ, Kwon GH, Han NS, Yoo BW, Kim JH, Paik SH, Chi YH, Lee KT, Lee JY (2013) Development of 3D-QSAR CoMSIA models for 5-(biphenyl-2-yl)-1H-tetrazole derivatives as angiotensin II receptor type 1 (AT1) antagonists. Bioorg Med Chem Lett 23:4540–4546

    CAS  Google Scholar 

  18. Arhancet GB, Woodard SS, Iyanar K, Case BL, Woerndle R, Dietz JD, Garland DJ, Collins JT, Payne MA, Blinn JR, Pomposiello SI, Hu X, Heron MI, Huang H-C, Lee LF (2010) Discovery of novel cyanodihydropyridines as potent mineralocorticoid receptor antagonists. J Med Chem 53:5970–5978

    CAS  Google Scholar 

  19. Nickenig G (2004) Should angiotensin II receptor blockers and statins be combined? Circulation 110:1013–1020

    Google Scholar 

  20. Nakamura M, Anzai N, Jutabha P, Sato H, Sakurai H, Ichida K (2010) Concentration-dependent inhibitory effect of Irbesartan on renal UricAcid transporters. J Pharmacol Sci 114:115–118

    CAS  Google Scholar 

  21. Miura S, Okabe A, Matsuo Y, Karnik SS, Saku K (2013) Unique binding behavior of the recently approved angiotensin II receptor blocker azilsartan compared with that of candesartan. Hypertens Res 36:134–139

    CAS  Google Scholar 

  22. Noda K, Saad Y, Kinoshita A, Boyle TP, Graham RM, Husain A, Karnik SS (1995) Tetrazole and carboxylate groups of angiotensin receptor antagonists bind to the same subsite by different mechanisms. J Biol Chem 270:2284–2289

    CAS  Google Scholar 

  23. Martirosyan AO, Aleksanyan MV, Terzyan SS, Ter-Zakharyan YZ, Agababyan RV, Karapetyan AA, Mndzhoyan SL, Tamazyan RA (2001) Synthesis and molecular and crystal structure of 1-(5-Benzyl-2-tetrazolyl)-1-cyclopentanecarboxylic acid. Penicillin and cephalosporins based on this acid. Pharm Chem J 35:169–171

    Google Scholar 

  24. Kidwai M, Misra P, Bhushan KR, Saxena RK, Singh M (2000) Microwave-assisted solid-phase synthesis of cephalosporin derivatives with antibacterial activity. Monatsh Chem 131:937–943

    CAS  Google Scholar 

  25. Anacona JR, Alvarez P (2002) Synthesis and antibacterial activity of metal complexes of cefazolin. Transit Met Chem 27:856–860

    CAS  Google Scholar 

  26. Chohan ZH, Supuran CT, Scozzafava A (2004) Metalloantibiotics: synthesis and antibacterial activity of cobalt(II), copper(II), nickel(II) and zinc(II) complexes of kefzol. J Enzyme Inhib Med Chem 19:79–84

    CAS  Google Scholar 

  27. Tremblay LW, Xu H, Blanchard JS (2010) Structures of the michaelis complex (1.2 Å) and the covalent acyl intermediate (2.0 Å) of cefamandole bound in the active sites of the mycobacterium tuberculosis β-Lactamase K73A and E166A mutants. Biochemistry 49:9685–9687

    Google Scholar 

  28. Vilain S, Cosette P, Junter GA, Jouenne T (2002) Phosphate deprivation is associated with high resistance to latamoxef of gel-entrapped, sessile-like Escherichia coli cells. J Antimicrob Chemother 49:315–320

    CAS  Google Scholar 

  29. Wagner R, Mollison KW, Liu L, Henry CL, Rosenberg TA, Bamaung N, Tu N, Wiedeman PE, Or Y, Luly JR, Lane BC, Trevillyan J, Chen YW, Fey T, Hsieh G, Marsh K, Nuss M, Jacobson PB, Wilcox D, Carlson RP, Carter GW, Djuric SW (2005) Rapamycinanalogs with reduced systemic exposure. Bioorg Med Chem Lett 15:5340–5343

    CAS  Google Scholar 

  30. Naidu BN, Sorenson ME, Bronson JJ, Pucci MJ, Clark JM, Ueda Y (2005) Synthesis, in vitro, and in vivo antibacterial activity of nocathiacin I thiol-Michael adducts. Bioorg Med Chem Lett 15:2069–2072

    CAS  Google Scholar 

  31. Diwakar SD, Bhagwat SS, Shingare MS, Gill CH (2008) Substituted 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones as novel anti-MRSA agents: synthesis, SAR, and in-vitro assessment. Bioorg Med Chem Lett 18:4678–4681

    CAS  Google Scholar 

  32. Renslo AR, Luehr GW, Gordeev MF (2006) Recent developments in the identification of novel oxazolidinone antibacterial agents. Bioorg Med Chem 14:4227–4240

    CAS  Google Scholar 

  33. Rajasekaran A, Thampi PP (2005) Synthesis and antinociceptive activity of some substituted-{5-[2-(1, 2, 3, 4-tetrahydrocarbazol-9-yl) ethyl] tetrazol-1-yl} alkanones. Eur J Med Chem 40:1359–1364

    CAS  Google Scholar 

  34. Rajasekaran A, Thampi PP (2004) Synthesis and analgesic evaluation of some 5-[b-(10-phenothiazinyl)ethyl]-1-(acyl)-1,2,3,4-tetrazoles. Eur J Med Chem 39:273–279

    CAS  Google Scholar 

  35. Adamec J, Waisser K, Kuneš J, Kaustová J (2005) A Note on the antitubercular activities of 1-Aryl-5-benzylsulfanyltetrazoles. Arch Pharm Chem Life Sci 338:385–389

    CAS  Google Scholar 

  36. Gaponik PN, Voitekhovich SV, Ivashkevich OA (2006) Metal derivatives of tetrazoles. Russ Chem Rev 75:507–539

    CAS  Google Scholar 

  37. Dave CG, Shah RD (2002) Annellation of triazole and tetrazole systems onto pyrrolo[2,3 d]pyrimidines: synthesis of tetrazolo[1,5-c]-pyrrolo[3,2-e]-pyrimidines and triazolo[1,5-c]pyrrolo[3,2-e]pyrimidines as potential antibacterial agents. Molecules 7:554–565

    CAS  Google Scholar 

  38. Arulmurugan S, Kavitha HP (2010) 2-Methyl-3-{4-[2-(1H-tetrazol-5-yl)ethylamino]phenyl}-3Hquinazolin-4-one. Molbank. https://doi.org/10.3390/M695

    Article  Google Scholar 

  39. Dhayanithi V, Syed SS, Kumaran K, Reguraman K, Sankar J, Ragavan RV, Kumar GP, S., Kumari NS, Pati HN (2011) Synthesis of selected 5-thio-substituted tetrazole derivatives and evaluation of their antibacterial and antifungal activities. J Serb Chem Soc 76:165–175

    Google Scholar 

  40. Moustafa MA, El-Sherbeny MA, El-Sherbiny DT, El-Sayed SM (2012) Molecular modeling, synthesis and antimicrobial evaluation of new molecular hybrids of tetrazole derivatives. J Am Sci 8:973–986

    Google Scholar 

  41. Jo YW, Im WB, Rhee JK, Shim MJ, Kim WB, Choi EC (2004) Synthesis and antibacterial activity of oxazolidinones containing pyridine substituted with heteroaromatic ring. Bioorg Med Chem 12:5909–5915

    CAS  Google Scholar 

  42. Kanakaraju S, Kumar PSV, Prasanna B, Chandramouli GVP (2013) Design, synthesis, and in vitro antimicrobial evaluation of fused pyrano[3,2-e]tetrazolo[1,5-c]pyrimidines and diazepines. ISRN Org Chem 21:635384–635393

    Google Scholar 

  43. Antypenko LM, Kovalenko SI, Antypenko OM, Katsev AM, Achkasova OM (2013) Design and evaluation of novel antimicrobial and anticancer agents among tetrazolo[1,5-c]-quinazoline-5-thione S-derivatives. Sci Pharm 81:15–42

    CAS  Google Scholar 

  44. Ramiz MMM, Abdel-Rahman AA-H (2011) Antimicrobial activity of newly synthesized 2,5-disubstituted 1,3,4-thiadiaozle derivatives. Bull Korean Chem Soc 32:4227–4232

    CAS  Google Scholar 

  45. Wael AE-S, Omar MA, Ali OM, Zyada RA, Mohamed AA, Abdel-Rahman AA (2012) Synthesis and antimicrobial activity of new substituted thienopyrimidines, their tetrazolyl and sugar derivatives. Acta Pol Pharm 69:439–447

    Google Scholar 

  46. Mohite PB, Bhaskar VH (2012) In vitro evaluation of tetrazoles as a novel class of anti-mycobacterium tuberculosis agents. Adv Pharm Bull 2:31–36

    CAS  Google Scholar 

  47. El-Sayed WA, Abdel Megeid RE, Abbas H-AS (2011) Synthesis and antimicrobial activity of new 1-[(tetrazol-5-yl)methyl]indole derivatives, their 1,2,4-triazole thioglycosides and acyclic analogs. Arch Pharm Res 34:1085–1096

    Google Scholar 

  48. Kategaonkar AH, Pokalwar RU, Sonar SS, Gawali VU, Shingate BB, Shingare MS (2010) Synthesis, in vitro antibacterial and antifungal evaluations of new α-hydroxyphosphonate and new α-acetoxyphosphonate derivatives of tetrazolo[1,5-a]quinoline. Eur J Med Chem 45:1128–1132

    CAS  Google Scholar 

  49. Varadaraji D, Suban SS, Ramasam VR, Kubendiran K, Raguraman JSKG, Nalilu SK, Pati HN (2010) Synthesis and evaluation of a series of 1-substituted tetrazole derivatives as antimicrobial agents. Org Commun 3:45–56

    CAS  Google Scholar 

  50. Lamie PL, Philoppes JN, Azouz AA, Safwat NM (2017) Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J Enzyme Inhib Med Chem 32:805–820

    CAS  Google Scholar 

  51. Warrilow AGS, Hull CM, Parker JE, Garvey EP, Hoekstra WJ, Moore WR, Schotzinger RJ, Kelly DE, Kelly SE (2014) Antimicrob Agents Chemother 58:7121–7127

    CAS  Google Scholar 

  52. Upadhayaya RS, Jain S, Sinha N, Kishore N, Chandra R, Arora SK (2004) Synthesis of novel substituted tetrazoles having antifungal activity. Eur J Med Chem 39:579–592

    CAS  Google Scholar 

  53. Mohite PB, Pandhare RB, Khanage SG, Bhaskar VH (2010) Synthesis and in vitro antimicrobial activity of some novel chalcones containing 5-phenyl tetrazole. Acta Pharm Sci 52:505–510

    CAS  Google Scholar 

  54. Kumar CNSSP, Parida DK, Santhoshi A, Kota AK, Sridhar B, Rao VJ (2011) Synthesis and biological evaluation of tetrazole containing compounds as possible anticancer agents. Med Chem Commun 2:486–492

    CAS  Google Scholar 

  55. Wei CX, Bian M, Gong GH (2015) Tetrazolium compounds: synthesis and applications in medicine. Molecules 20:5528–5553

    CAS  Google Scholar 

  56. Matysiak J, Niewiadomy A, Krajewska-Kułak E, Macik-Niewiadomy G (2003) Synthesis of some 1-(2,4-dihydroxythiobenzoyl)imidazoles, -imidazolines and -tetrazoles and their potent activity against Candida species. Farmaco 58:55–61

    Google Scholar 

  57. Nishimoto AT, Wiederhold NP, Flowers SA, Zhang Q, Kelly SL, Morschhäuser J, Yates CM, Hoekstra WJ, Schotzinger RJ, Garvey EP, Rogers PD (2019) Antimicrob Agents Chemother 63:e00341–e419

    Google Scholar 

  58. Wiederhold NP (2018) The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents 51:333–339

    CAS  Google Scholar 

  59. Colarusso S, Gerlach B, Koch U, Muraglia E, Conte I, Stansfield I, Matassa VG, Narjes F (2002) Evolution, synthesis and SAR of tripeptide α-ketoacid Inhibitors of the hepatitis C virus NS3/NS4A serine protease. Bioorg Med Chem Lett 12:705–708

    CAS  Google Scholar 

  60. Johansson A, Poliakov A, Akerblom EA, Wiklund K, Lindeberg G, Winiwarter S, Danielson UH, Samuelsson B, Hallberg A (2003) Acyl sulfonamides as potent protease inhibitors of the hepatitis C virus full-length NS3 (Protease-Helicase/NTPase): a comparative study of different C-terminals. Bioorg Med Chem 11:2551–2568

    CAS  Google Scholar 

  61. Poliakov A, Johansson A, Ekerblom E, Oscarsson K, Samuelsson B, Hallberg A, Danielson UH (2004) Structure-activity relationships for the selectivity of hepatitis C virus NS3 protease inhibitors. Biochim Biophys Acta 167:51–59

    Google Scholar 

  62. Perni RB, Pitlik J, Britt SD, Court JJ, Courtney LF, Deininger DD, Farmer LJ, Gates CA, Harbeson SL, Levin RB, Lin C, Lin K, Moon YC, Luong YP, O´Malley ET, Rao BG, Thomson JA, Tung RD, Van Drie JH, Wei Y (2004) Inhibitors of hepatitis C virus NS3·4A protease 2. Warhead SAR and optimization. Bioorg Med Chem Lett 14:1441–1446

    Google Scholar 

  63. Chang CS, Lin YT, Shih SR, Lee CC, Lee YC, Tai CL, Tseng SN, Chern JH (2005) Design, synthesis, and antipicornavirus activity of 1-[5-(4-arylphenoxy)alkyl]-3-pyridin-4-ylimidazolidin-2-one derivatives. J Med Chem 48:3522–3535

    CAS  Google Scholar 

  64. Sotriffer CA, Ni H, McCammon JA (2000) Active site binding modes of HIV-1 integrase inhibitors. J Med Chem 43:4109–4117

    CAS  Google Scholar 

  65. Walker MA, Johnson T, Ma Z, Banville J, Remillard R, Kim O, Zhang Y, Staab A, Wong H, Torri A, Samanta H, Lin Z, Deminie C, Terry B, Krystal M, Meanwell N (2006) Triketoacid inhibitors of HIV-integrase: a new chemotype useful for probing the integrasepharmacophore. Bioorg Med Chem Lett 16:2920–2924

    CAS  Google Scholar 

  66. Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Tuntland T, Zhang K, Karanewsky D, He Y (2006) Design, synthesis, and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part 2. Bioorg Med Chem Lett 16:2109–2112

    Google Scholar 

  67. Muraglia E, Kinzel OD, Laufer R, Miller MD, Moyer G, Munshi V, Orvieto F, Palumbi MC, Pescatore G, Rowley M, Williams PD, Summa V (2006) Tetrazole thioacetanilides: potent non-nucleoside inhibitors of WT HIV reverse transcriptase and its K103N mutant. Bioorg Med Chem Lett 16:2748–2752

    CAS  Google Scholar 

  68. Abell AD, Foulds GJ (1997) Synthesis of a cis-conformationally restricted peptide bondisostere and its application to the inhibition of the HIV-1 protease. J Chem Soc Perkin Trans 1:2475–2482

    Google Scholar 

  69. May BCH, Abell AD (2002) α-Methylene tetrazole-based peptidomimetics: synthesis and inhibition of HIV protease. J Chem Soc Perkin Trans 1:172–178

    Google Scholar 

  70. Han Q, Chang C-H, Li R, Ru Y, Jadhav PK, Lam PYS (1998) Cyclic HIV protease inhibitors: design and synthesis of orally bioavailable, pyrazole P2/P2’ cyclic ureas with improved potency. J Med Chem 41:2019–2028

    CAS  Google Scholar 

  71. Wang SX, Fang Z, Fan ZJ, Wang D, Li YD, Ji XT, Hua XW, Huang Y, Kalinina TA, Bakulev VA, Morzherin YY (2013) Synthesis of tetrazole containing 1,2,3-hiadiazole derivatives via U-4CR and their anti-TMV activity. Chin Chem Lett 24:889–892

    Google Scholar 

  72. Yeung KS, Qiu Z, Yin Z, Trehan A, Fang H, Pearce B, Yang Z, Zadjura L, D’Arienzo CJ, Riccardi K, Shi PY, Spicer TP, Gong YF, Browning MR, Hansel S, Santone K, Barker J, Coulter T, Lin PF, Meanwell NA, Kadow JF (2013) Inhibitors of HIV-1 attachment. Part 8: the effect of C7-heteroaryl substitution on the potency, and in vitro and in vivo profiles of indole-based nhibitors. Bioorg Med Chem Lett 23:203–208

    Google Scholar 

  73. Zarubaev VV, Golod EL, Anfimov PM, Shtro AA, Saraev VV, Gavrilov AS, Logvinov AV, Kiselev OI (2010) Synthesis and anti-viral activity of azolo-adamantanes against influenza A virus. Bioorg Med Chem 18:839–848

    CAS  Google Scholar 

  74. Hutchinson DW, Naylor M (1985) The antiviral activity of tetrazole phosphomic acids and their analogues. Nucleic Acids Res 13:8519–8530

    CAS  Google Scholar 

  75. El-Sayed WA, El-Kosy SM, Ali OM, Emselm HM, Abdel-Rahman AA (2012) Anticancer activity of new (tetrazol-5-yl) methylindole derivatives and their acyclic c nucleoside analogs. Acta Pol Pharm 69:669–677

    CAS  Google Scholar 

  76. Romagnoli R, Baraldi PG, Salvador MK, Preti D, Tabrizi MA, Brancale A, Fu XH, Li J, Zhang SZ, Hamel E, Bortolozzi R, Basso G, Viola G (2011) Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J Med Chem 55:475–488

    Google Scholar 

  77. Kádár Z, Kovács D, Frank É, Schneider G, Huber J, Zupkó I, Bartók T, Wölfling J (2011) Synthesis and in vitroantiproliferative activity of novel androst-5-ene triazolyl and tetrazolyl derivatives. Molecules 16:4786–4806

    Google Scholar 

  78. Al-Duaij OK, Hafez HN, el-Gazzar ARBA (2013) Synthesis of novel series of benzothieno [2,3-d] pyrimidine derivatives, promising anticancer agents. J Chem Eng 7:725–742

    Google Scholar 

  79. Jackman AL, Kimbell R, Aherne GW, Brunton L, Jansen G, Stephens TC, Smith MN, Wardleworth JM, Boyle FT (1997) Cellular pharmacology and in vivo activity of a new anticancer, agent, ZD9331: a water-soluble, nonpolyglutamatable, quinazoline-based inhibitor of thymidylate synthase. Clin Cancer Res 3:911–921

    CAS  Google Scholar 

  80. Arshad M, Bhat AR, Pokharel S, Kim JE, Lee EJ, Athar F, Choi I (2014) Synthesis, characterization and anticancer screening of some novel piperonyl-tetrazole derivatives. Eur J Med Chem 71:229–236

    CAS  Google Scholar 

  81. Jedhe GS, Paul D, Gonnade RG, Santra MK, Hamel E, Nguyen TL, Sanjayan GJ (2013) Correlation of hydrogen-bonding propensity and anticancer profile of tetrazole-tethered combretastatin analogues. Bioorg Med Chem Lett 23:4680–4684

    CAS  Google Scholar 

  82. Alam M, Nami SAA, Husain A, Lee D-U, Park S (2013) Synthesis, characterization, X-ray diffraction, antimicrobial and in vitro cytotoxicity studies of 7α-Aza-B-homostigmast-5-eno[7a,7-d]tetrazole. C R Chim 16:201–206

    CAS  Google Scholar 

  83. Zhu B, Ge J, Yao SQ (2015) Developing new chemical tools for DNA methyltransferase 1 (DNMT 1): a small-molecule activity-based probe and novel tetrazole-containing inhibitors. Bioorg Med Chem 23:2917–2927

    CAS  Google Scholar 

  84. Ghoshal K, Bai S (2007) DNA methyltransferases as targets for cancer therapy. Drugs Today 43:395–422

    CAS  Google Scholar 

  85. Bommagani S, Penthala NR, Balasubramaniam MS, Kuravi S, Caldas-Lopes E, Guzman ML, Balusu R, Crooks PA (2019) A novel tetrazole analogue of resveratrol is a potent anticancer agent. Bioorg Med Chem Lett 29:172–178

    CAS  Google Scholar 

  86. Rostom SA, Ashour HM, El Razik HA, Abd El Fattah H, El-Din NN (2009) Azole antimicrobial pharmacophore-based tetrazoles: synthesis and biological evaluation as potential antimicrobial and anticonvulsant agents. Bioorg Med Chem 17:2410–2422

    Google Scholar 

  87. Wang SB, Deng XQ, Zheng Y, Yuan YP, Quan ZS, Guan LP (2012) Synthesis and evaluation of anticonvulsant and antidepressant activities of 5-alkoxytetrazolo[1,5 c]thieno[2,3-e]pyrimidine derivatives. Eur J Med Chem 56:139–144

    CAS  Google Scholar 

  88. Sun XY, Wei CX, Deng XQ, Sun ZG, Quan ZS (2010) Synthesis and primary anticonvulsant activity evaluation of 6-alkyoxyl-tetrazolo [5,1-a]phthalazine derivatives. Arzneim Forsch 60:289–292

    CAS  Google Scholar 

  89. Liao AM, Wang T, Cai B, Jin Y, Cheon S, Chun C, Wang Z (2016) Design, synthesis and evaluation of 5-substituted 1-H-tetrazoles as potent anticonvulsant agents. Arch Pharm Res 40:435–443

    Google Scholar 

  90. Gao YL, Zhao GL, Liu W, Shao H, Wang YL, Xu WR, Tang LD, Wang JW (2010) Design, synthesis and in vivo hypoglycemic activity of tetrazole-bearing N-glycosides as SGLT2 inhibitors. Indian J Chem B 49:1499–1508

    Google Scholar 

  91. Momose Y, Maekawa T, Odaka H, Ikeda H, Sohda T (2002) Novel 5-substituted-1H-tetrazole derivatives as potent glucose and lipid lowering agents. Chem Pharm Bull (Tokyo) 50:100–111

    CAS  Google Scholar 

  92. Pegklidou K, Koukoulitsa C, Nicolaou I, Demopoulos VJ (2010) Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorg Med Chem 18:2107–2114

    Google Scholar 

  93. Arif M, Jabeen F, Saeed A, Qureshi IZ, Mushtaq N (2017) A new class of potential antidiabeticacetohydrazides: synthesis, in vivo antidiabetic activity and molecular docking studies. Bangladesh J Pharmacol 12:319–332

    Google Scholar 

  94. Momose Y, Maekawa T, Odaka H, Ikeda H, Sohda T (2002) Novel 5-substituted-1H-tetrazole derivatives as potent glucose and lipid lowering agents. Chem Pharm Bull 50:100–111

    CAS  Google Scholar 

  95. Wani MY, Bhat AR, Azam A, Choi I, Athar F (2012) Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives. Eur J Med Chem 48:313–320

    CAS  Google Scholar 

  96. Wani MY, Bhat AR, Azam A, Lee DH, Choi I, Athar F (2012) Synthesis and in vitro evaluation of novel tetrazole embedded 1,3,5-trisubstituted pyrazoline derivatives as Entamoebahistolyticagrowth inhibitors. Eur J Med Chem 54:845–854

    CAS  Google Scholar 

  97. Faria JV, dos Santos MS, Bernardino AM, Becker KM, Machado GM, Rodrigues RF, Canto-Cavalheiro MM, Leon LL (2013) Synthesis and activity of novel tetrazole compounds andtheir pyrazole-4-carbonitrile precursors against Leishmaniaspp. Bioorg Med Chem Lett 23:6310–6312

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandi C. Malakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabi, A.K. et al. (2022). An Overview on Biological Evaluation of Tetrazole Derivatives. In: Swain, B.P. (eds) Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-8399-2_8

Download citation

Publish with us

Policies and ethics