Skip to main content

Overview on Biological Activities of Thiazole Derivatives

  • Chapter
  • First Online:
Nanostructured Biomaterials

Abstract

In the disciplines of pharmaceutical chemistry and drug discovery process, thiazole derivatives are one of the most prominent and widely used heterocycles. The distinctive structural features processed by thiazoles place them in the special category of molecules that are essential in biological and medicinal chemistry fields. The thiazole cores exhibit a broad extent of pharmacological and biological activities using weak interactions with receptors and enzymes in the biological system. In particular, several thiazole derivatives with immense therapeutic potency have been well explored as clinical drugs to treat different types of diseases. This chapter illustrates the current developments on thiazole derivatives as antitumour, antimicrobial, anti‐inflammatory, antiviral, anticancer and other medicinal agents to attain prominence in medicinal chemistry fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

U.S. FDA:

United States Food and Drug Administration

WHO:

World Health Organization

LEDs:

light-emitting diode

DNA:

Deoxyribonucleic Acid

CNS:

Central Nervous System

PBP3:

penicillin-binding protein 3

NTZ:

Nitazoxanide

NSAID:

Non-steroidal Anti-inflammatory Drugs

PFOR:

Pyruvate: Ferredoxin/Flavodoxinoxidoreductase

OAB:

Overactive Bladder Symptoms

HER2:

Human Epidermal Growth Factor Receptor 2

RNA:

Ribonucleic Acid

HCV:

Hepatitis C Virus

COX:

Cyclooxygenase

CYP3A:

Cytochrome P450 3A

AD:

Alzheimer's Disease 

GERD:

Gastroesophageal Reflux Disease

PI3K-α:

Phosphotidylinositol-3-kinase-α

TPOR:

Thrombopoietin Receptor

PARP:

poly(ADP-ribose)polymerase

IMPDH:

Inosine-5′-monophosphate dehydrogenase

TNF-α:

Tumour necrosis factor alpha

XMP:

Xanthosine monophosphate

References

  1. Cascioferro S, Parrino B, Carbone D, Schillaci D, Giovannetti E, Cirrincione G, Diana P (2020) Thiazoles, their benzofused systems, and thiazolidinone derivatives: versatile and promising tools to combat antibiotic resistance. J Med Chem 63:7923–7956

    Article  CAS  Google Scholar 

  2. Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA (2015) A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem 58:4383–4438

    Article  CAS  Google Scholar 

  3. Fu RG, Wang Y, Xia F, Zhang HL, Sun Y, Yang DW, Wang YW, Yin P (2019) Synthesis of 2-amino-5-acylthiazoles by a tertiary amine-promoted one-pot three-component cascade cyclization using elemental sulfur as a sulfur source. J Org Chem 84:12237–12245

    Article  CAS  Google Scholar 

  4. Miura T, Funakoshi Y, Fujimoto Y, Nakahashi J, Murakami M (2015) Facile synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters. Org Lett 17:2454–2457

    Article  CAS  Google Scholar 

  5. Rostom SAF, El-Ashmay IM, Abd El Razik HA, Badr MH, Ashour HMA (2009) Design and synthesis of some thiazolyl and thiadiazolyl derivatives of antipyrine as potential non-acidic anti-inflammatory, analgesic and antimicrobial agents. Bioorg Med Chem 17:882–895

    Google Scholar 

  6. Ali AM, Saber GE, Mahfouz NM, El Gendy MA, Radwan AA, Hamid MAE (2007) Synthesis and three-dimensional qualitative structure selectivity relationship of 3,5-disubstituted-2,4-thiazolidinedione derivatives as COX2 inhibitors. Arch Pharm Res 30:1186–1204

    Google Scholar 

  7. Franklin PX, Pillai AD, Rathod PD, Yerande S, Nivarkar M, Padh H, Vasu KK, Sudarsanam V (2008) 2-Amino-5-thiazolyl motif: a novel scaffold for designing anti-inflammatory agents of diverse structures. Eur J Med Chem 43:129–134

    Article  CAS  Google Scholar 

  8. Roy RS, Gehring AM, Milne JC, Belshaw PJ, Walsh CT (1999) Thiazole and oxazole peptides: biosynthesis and molecular machinery. Nat Prod Rep 16:249–263

    Article  CAS  Google Scholar 

  9. Frijaa LMT, Pombeiro AJL, Kopylovich MN (2016) Coordination chemistry of thiazoles, isothiazoles and thiadiazoles. Coord Chem Rev 308:32–55

    Article  Google Scholar 

  10. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    Google Scholar 

  11. Ali I, Lone MN, Al-Othman ZA, Al-Warthan A, Sanagi MM (2015) Heterocyclic scaffolds: centrality in anticancer drug development. Curr Drug Targets 16:711–734

    Article  CAS  Google Scholar 

  12. Huang ST, Hsei IJ, Chen C (2006) Synthesis and anticancer evaluation of bis(- benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg Med Chem 14:6106–6119

    Article  CAS  Google Scholar 

  13. Kayagil I, Demirayak S (2009) Synthesis and anticancer activities of some thiazole derivatives. Phosphorus Sulfur Silicon 184:2197–2207

    Article  CAS  Google Scholar 

  14. El-Subbagha HI, Abadi AH, Lehmann J (1999) Synthesis and antitumour activity of ethyl 2 - Substituted-aminothiazole-4-carboxylate analogs. Arch Pharm Pharm Med Chem 332:137–142

    Article  Google Scholar 

  15. Shao L, Zhou X, Hu Y, Jin Z, Liu J, Fang J-X (2006) Synthesis and evaluation of novel ferrocenyl thiazole derivatives as anticancer agents. Synth React Inorg Met-Org Nano-Met Chem 36:325–330

    Article  CAS  Google Scholar 

  16. Luzina EL, Popov AV (2009) Synthesis and anticancer activity of N-bis(trifluoromethyl)alkyl-NKthiazolyl and N-bis(trifluoromethyl)alkyl-NKbenzothiazolylureas. Eur J Med Chem 44:4944–4953

    Article  CAS  Google Scholar 

  17. Dunn D, Husten J, Ator MA, Chatterjee S (2007) Novel poly(ADP-ribose polymerase-1inhibitors. Bioorg Med Chem 17:542–545

    Article  CAS  Google Scholar 

  18. Kaur H, Goyal A (2018) A review on thiazole as anticancer agents. Int J Pharm Drug Anal 6:509–522

    Google Scholar 

  19. Sintchak MD, Nimmesgern E (1999) The structure of inosine 51-monophosphate dehydrogenase and the design of novel inhibitors. Immunopharmacology 47:163–184

    Article  Google Scholar 

  20. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase (PI3K) pathway in Cancer. Nat Rev Drug Discov 8:627–644

    Article  CAS  Google Scholar 

  21. Morigi R, Locatelli A, Leoni A, Rambaldi M (2015) Recent patents on thiazole derivatives endowed with antitumour activity. Recent Pat Anticancer Drug Discov 10:280–297

    Article  CAS  Google Scholar 

  22. Hedstrom L (2009) IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 109:2903–2928

    Article  CAS  Google Scholar 

  23. Cooney DA, Jayaram HN, Glazer RI, Kelley JA, Marquez VE, Gebeyehu G, Van Cott AC, Zwelling LA, Johns DG (1983) Studies on the mechanism of action of Thiazofurin metabolism to an analog of NAD with potent IMP-dehydrogenase-inhibitory activity. Adv Enzyme Regul 21:271–303

    Article  CAS  Google Scholar 

  24. Mostafa MS, Abd El-Salam NM (2013) Synthesis and biological evaluation of 3-methyl- 2pyrazolin-5-one derivatives containing thiazole and indole moieties. Der PharmaChemica 5:1–7

    Google Scholar 

  25. Qureshi A, Pradhan DA (2016) Antimicrobial thiazoles: a short review. Curr Res Bio Phar Sci 5:6–13

    CAS  Google Scholar 

  26. Althagafi I, El-Metwaly N, Farghaly TA (2019) New series of thiazole derivatives: synthesis, structural elucidation, antimicrobial activity molecular modeling and MOE docking. Molecules 24:1741

    Article  Google Scholar 

  27. Sadek B, Al-Tabakha MM, Fahelelbom KMS (2011) Antimicrobial prospect of newly synthesized 1,3-thiazole derivatives. Molecules 16:9386–9396

    Article  CAS  Google Scholar 

  28. Bikobo DS, Vodnar DC, Tiperciue ASB, Nastasa C, Douchet M, Oniga O (2017) Synthesis of 2-phenylamino-thiazole derivatives as antimicrobial agents. J Saudi Chem Soc 21:861–868

    Article  CAS  Google Scholar 

  29. Saravanan G, Alagarsamy V, Pavitra TGV, Kumar GC, Savithri Y, Naresh L, Avinash P (2010) Synthesis, characterization and anti-microbial activities of novel thiazole derivatives. Int J Pharma Bio Sci 1:1–8

    Google Scholar 

  30. Naryana B, Raj KKV, Ashalatha BV, Kumari SN (2006) Antibacterial and Antifungal studies on some new acetylcinnolines&cinnolinyl thiazole derivatives. Indian J Chem 45B:1704–1709

    Google Scholar 

  31. Borde RM, Jadhav SB, Dhavse RR, Munde AS (2018) Design, synthesis, and pharmacological evaluation of some novel bis-thiazole derivatives. Asian J Pharm Clin Res 11:164–168

    Article  Google Scholar 

  32. Borelli C, Schaller M, Niewerth M, Nocker K, Baasner B, Berg D, Tiemann R, Tietjen K, Fugmann B, Fugmann SL, Korting HC (2008) Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy 54:245–259

    Article  CAS  Google Scholar 

  33. Łączkowski KZ, Sałat K, Misiura K, Podkowa A, Malikowska N (2016) Synthesis and anticonvulsant activities of novel 2-(cyclopentylmethylene)hydrazinyl-1,3-thiazoles in mouse models of seizures. J Enzyme Inhib Med Chem 31:1576–1582

    Article  Google Scholar 

  34. Łączkowski KZ, Konklewska N, Biernasiuk A, Malm A, Sałat K, Furgała A, Dzitko K, Bekier K, Łączkowska AB, Paneth A (2018) Thiazoles with cyclopropyl fragment as antifungal, anticonvulsant, and anti-Toxoplasma gondii agents: synthesis, toxicity evaluation, and molecular docking study. Med Chem Res. https://doi.org/10.1007/s00044-018-2221-x

    Article  Google Scholar 

  35. Gong GH, Wang D, Zhang JF, Wei CX, Quan ZS (2014) Anticonvulsant activity of 2-(Substituted-imino) thiazolidin-4-ones. Drug Res 64:5–9

    Article  CAS  Google Scholar 

  36. Khan I, Ibrar A, Waqas M, White JM (2013) Synthesis, X-ray crystallographic studies and antibacterial screening of 1-(5-(4-Chlorophenyl) thiazol-2-yl) hydrazine hydrobromide. Phys Rev Res Int 3:10–17

    Article  CAS  Google Scholar 

  37. Chohan ZH, Kausar S (2000) Synthesis, characterization and biological properties of tridentate nno, nns and nnn donor thiazole-derived furanyl, thiophenyl and pyrrolylschiff bases and their Co(II), Cu(II), Ni(II) and Zn(II) metal chelates. Met Based Drugs 7:17–22

    Article  CAS  Google Scholar 

  38. Ivanenkov YA, Yamidanov RS, Osterman IA, Sergiev PV, Aladinskiy VA, Aladinskaya AV, Terentiev VA, Veselov MS, Ayginin AA, Skvortsov DA, Komarova KS, Sadovnikov SV, Matniyazov R, Sofronova AS, Malyshev AS, Machulkin AE, Petrov RA, Lukianov D, Iarovenko S, Bezrukov DS, Baymiev AK, Dontsova OA (2019) 2-Pyrazol-1-yl-thiazole derivatives as novel highly potent antibacterials. J Antibiot 72:827

    Article  CAS  Google Scholar 

  39. Lunkad AS, Kothawade SN, Darkunde KK, Priya B, Bagmar UR, Bhandari DS (2013) Synthesis and screening anthelmintic activity of some thiazole derivatives. Int J Chem Sci 11:1146–2115

    CAS  Google Scholar 

  40. Himaja M, Nitesh G, Munirajesekhar D, Asif K, Mukesh SS (2012) Synthesis and Biological evaluation of some N-methylated derivatives of Thiazolylamino acids and peptides. J Pharm Sci Innovation 1:33–36

    Google Scholar 

  41. Alspach JD, Ingraham LL (1977) Inhibition of acetylcholinesterase by thiamine a structure-function study. J Med Chem 20:161–164

    Article  CAS  Google Scholar 

  42. Colovic MB, Krstic DZ, Pasti TDL, Bondzic AM, Vasic VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandi C. Malakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gujjarappa, R. et al. (2022). Overview on Biological Activities of Thiazole Derivatives. In: Swain, B.P. (eds) Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-8399-2_5

Download citation

Publish with us

Policies and ethics