Skip to main content

An Introduction on Evolution of Azole Derivatives in Medicinal Chemistry

  • Chapter
  • First Online:
Nanostructured Biomaterials

Abstract

In recent years and over the previous few decades, the evolution of bioactive molecules embedded with the heterocyclic scaffolds has attracted considerable awareness in drug-discovery research and medicinal chemistry. Analysis of the U.S. FDA-approved drugs database acknowledges that 59% of particular drugs are related to small molecules embedded with a heterocycle containing nitrogen atom. Among these, azole-based compounds are particularly interesting because of their broad range of pharmacological activities. The solitary constitutional ingredient of azole moiety with reasonable electron-abundant aspect is advantageous for azole compounds to easily bind with various receptors and enzymes in the biological environment through unique specific interactions, which contributes to innumerous valuable biological properties. The related development and research findings of azole derivatives on pharmaceutical chemistry have arisen as a swiftly developing and progressively active topic. This activity consistently delivers a comprehensive overview on current improvements in biological action and pharmacological activity of azole derivatives in the wide spectrum of pharmaceutical chemistry as anti-inflammatory, anticancer, antihypertensive, antibacterial, antiparasitic, anti-neuropathic, antiviral, anti-obesity, antihistaminic, antitubercular, anti-HIV, antifungal and other medicinal agents. This is the first comprehensive overview of biological and pharmacological activity of azole family, which will assist the readers in understanding the SAR on azole-containing drugs and other medicinally active azole molecules. The basis of substitution pattern on thiazole ring will lead the medicinal chemist towards further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

U.S. FDA:

United States food and drug administration

HIV:

Human immunodeficiency virus

SAR:

Structure-activity relationship

DNA:

Deoxyribonucleic acid

CNS:

Central nervous system

HCl:

Hydrochloric acid

CYP450:

Cytochromes P450

NSAID:

Non-steroidal anti-inflammatory drugs

ACE:

Angiotensin-converting enzyme

BCRP:

Breast cancer resistance protein

P-gp:

P-glycoprotein

RNA:

Ribonucleic acid

CML:

Chronic myelogenous leukemia

COX:

Cyclooxygenase

PGH2:

Prostaglandin H2

PGG2:

Prostaglandin G2

POX:

Peroxidase

PGI2:

Prostaglandin I2

PGE2:

Prostaglandin E2

PGD2:

Prostaglandin D2

PGF:

Prostaglandin F2alpha

TxA2:

Thromboxane A2

References

  1. Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B (2005) Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem Rev 105:739–758

    CAS  Google Scholar 

  2. Fernandez LS, Buchanan MS, Carroll AR, Feng YJ, Quinn RJ, Avery VM (2009) Flinderoles A-C: antimalarial bis-indole alkaloids from flindersia species. Org Lett 11:329–332

    CAS  Google Scholar 

  3. Elmegeed GA, Baiuomy AR, Abdel- Salam OME (2007) Evaluation of the anti-inflammatory and anti-nociceptive activities of novel synthesized melatonin analogues. Eur J Med Chem 42:1285–1292

    Google Scholar 

  4. Ikemoto H, Yoshino T, Sakata K, Matsunaga S, Kanai M (2014) Pyrroloindolone synthesis via a Cp*CoIII-catalyzed redox-neutral directed C-H alkenylation/annulation sequence. J Am Chem Soc 136:5424–5431

    CAS  Google Scholar 

  5. Kok SHL, Gambari R, Chui CH, Yuen MCW, Lin E, Wong RSM, Lau FY, Cheng GYM, Lam WS, Chan SH, Lam KH, Cheng CH, Lai PBS, Yu MWY, Chueng F, Tang JCO, Chan ASC (2008) Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg Med Chem 16:3626–3631

    CAS  Google Scholar 

  6. Liu C, Lin J, Pitt S, Zhang RF, Sack JS, Kiefer SE, Kisah K, Doweyko AM, Zhang H, Marathe PH, Trzaskos J, Mckinnon M, Dodd JH, Barrish JC, Schieven GL, Leftheris K (2008) Benzothiazole based inhibitors of p38α MAP kinase. Bioorg Med Chem Lett 18:1874–1879

    CAS  Google Scholar 

  7. Shneine JK, Alaraji YH (2016) Chemistry of 1, 2, 4-triazole: a review article. Int J Sci Res 5:2319–7064

    Google Scholar 

  8. Kapkoti DS, Singh S, Luqman S, Bhakuni RS (2018) Synthesis of novel 1,2,3-triazole based artemisinin derivatives and their antiproliferative activity. New J Chem 42:5978–5995

    CAS  Google Scholar 

  9. Kuang J, Chen B, Ma S (2014) Copper-mediated efficient three-component synthesis of 1,2,4-triazoles from amines and nitriles. Org Chem Front 1:186–189

    Google Scholar 

  10. Sun GX, Yang MY, Shi YX, Sun ZH, Liu XH, Wu HK, Li BJ, Zhang YG (2014) Microwave assistant synthesis, antifungal activity and DFT theoretical study of some novel 1,2,4-triazole derivatives containing pyridine moiety. Int J Mol Sci 15:8075–8090

    CAS  Google Scholar 

  11. Tang R, Jin L, Mou C, Yin J, Bai S, Hu D, Wu J, Yang S, Song B (2013) Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety. Chem Cent J 7:30–36

    Google Scholar 

  12. Ötvös SB, Fülöp F (2015) Flow chemistry as a versatile tool for the synthesis of triazoles. Catal Sci Technol 5:4926–4941

    Google Scholar 

  13. Xu K, Huang L, Xu Z, Wang Y, Bai G, Wu Q, Wang X, Yu S, Jiang Y (2015) Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group. Drug Des Dev Ther 9:1459–1467

    Google Scholar 

  14. Bello AM, Konforte D, Poduch E, Furlonger C, Wei L, Liu Y, Lewis M, Pai EF, Paige CJ, Kotra LP (2009) Structure-activity relationships of orotidine-5′-monophosphate decarboxylase inhibitors as anticancer agents. J Med Chem 52:1648–1658

    CAS  Google Scholar 

  15. Krajewska E, Shugar D (1982) Pyrimidine ribonucleoside phosphorylase activity vs 5- and/or 6-substituted uracil and uridine analogues, including conformational aspects. Biochem Pharmacol 31:1097–1102

    CAS  Google Scholar 

  16. Pal’chikov VA (2013) Morpholines. synthesis and biological activity. Russ J Org Chem 49:787–814

    Google Scholar 

  17. Naim MJ, Alam O, Alam MJ, Alam P, Shrivastava N (2015) A review on pharmacological profile of morpholine derivatives. Int J Pharmacol Pharm Sci 1:40–51

    Google Scholar 

  18. Gentles RG, Grant-Young K, Hu S, Huang Y, Poss MA, Andres C, Fiedler T, Knox R, Lodge N, Weaver CD, Harden DG (2008) Initial SAR studies on apamin-displacing 2-aminothiazole blockers of calcium-activated small conductance potassium channels. Bioorg Med Chem Lett 18:5316–5319

    CAS  Google Scholar 

  19. Zhao M, Yin J, Huffman MA, McNamara JM (2006) A very concise synthesis of a potent N-(1,3-thiazol-2-yl)pyridin-2-amine KDR kinase inhibitor. Tetrahedron 62:1110–1115

    CAS  Google Scholar 

  20. Heng S, Gryncel KR, Kantrowitz ER (2009) A library of novel allosteric inhibitors against fructose 1,6-bisphosphatase. Bioorg Med Chem 17:3916–3922

    CAS  Google Scholar 

  21. Gallardo-Godoy A, Gever J, Fife KL, Silber BM, Prusiner SB, Renslo AR (2011) 2-aminothiazoles as therapeutic leads for prion diseases. J Med Chem 54:1010–1021

    CAS  Google Scholar 

  22. Yeh VSC (2004) Recent advances in the total syntheses of oxazole-containing natural products. Tetrahedron 60:11995–12042

    CAS  Google Scholar 

  23. Fu RG, Wang Y, Xia F, Zhang HL, Sun Y, Yang DW, Wang YW, Yin P (2019) Synthesis of 2-Amino-5-acylthiazoles by a tertiary amine-promoted one-pot three-component cascade cyclization using elemental sulfur as a sulfur source. J Org Chem 84:12237–12245

    CAS  Google Scholar 

  24. Miura T, Funakoshi Y, Fujimoto Y, Nakahashi J, Murakami M (2015) Facile synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters. Org Lett 17:2454–2457

    CAS  Google Scholar 

  25. Zificsak CA, Hlasta DJ (2004) Current methods for the synthesis of 2-substituted azoles. Tetrahedron 60:8991–9016

    CAS  Google Scholar 

  26. Turchi IJ, Dewar MJS (1975) Chemistry of oxazoles. Chem Rev 75:389–437

    CAS  Google Scholar 

  27. Esposito G, Teta R, Miceli R, Ceccarelli LS, Sala GD, Camerlingo R, Irollo E, Mangoni A, Pirozzi G, Costantino V (2015) Isolation and assessment of the in vitro anti-tumor activity of smenothiazole A and B, chlorinated thiazole-containing peptide/polyketides from the caribbean sponge, smenospongia aurea. Mar Drugs 13:444–459

    Google Scholar 

  28. Bellina F, Rossi R (2006) Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron 62:7213–7256

    CAS  Google Scholar 

  29. Saraswat P, Jeyabalan G, Hassan MZ, Rahman MU, Nyola NK (2016) Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moieties. Synth Commun 46:1643–1664

    CAS  Google Scholar 

  30. Neumann KT, Lindhardt AT, Bang-Andersen B, Skrydstrup T (2015) Palladium-catalyzed carbonylative sonogashira coupling of aryl bromides using near stoichiometric carbon monoxide. Org Lett 17:2094–2097

    CAS  Google Scholar 

  31. Saha P, Ramana T, Purkait N, Ali MA, Paul R, Punniyamurthy T (2009) J Org Chem 74:8719–8725

    CAS  Google Scholar 

  32. Roth HJ, Kleemann A (1988) Drug synthesis in pharmaceutical chemistry, vol 1, pp 88–114. Wiley, New York

    Google Scholar 

  33. Joule JA, Mills K (2000) Heterocyclic chemistry, 4th edn. Blackwell Science, Cambridge, pp 63–120

    Google Scholar 

  34. Olbe L, Carlsson E, Lindberg P (2003) A Proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discovery 2:132–139

    CAS  Google Scholar 

  35. Michael JP (2005) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 22:627–646

    CAS  Google Scholar 

  36. Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK (2008) Comprehensive heterocyclic chemistry. Elsevier, Oxford 1:1–13718

    Google Scholar 

  37. Henry GD (2004) De novo synthesis of substituted pyridines. Tetrahedron 60:6043–6061

    CAS  Google Scholar 

  38. Alamgir M, Black DSC, Kumar N (2007) Synthesis, reactivity and biological activity of benzimidazoles. In: Khan MTH (ed) Bioactive heterocycles III, vol 9. Topics in Heterocyclic Chemistry. Springer, Berlin, Heidelberg, pp 87–118

    Google Scholar 

  39. Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930

    CAS  Google Scholar 

  40. Skalitzky DJ, Marakovits JT, Maegley KA, Ekker A, Yu X-H, Hostomsky Z, Webber SE, Eastman BW, Almassy R, Li J, Curtin NJ, Newell DR, Calvert AH, Griffin RJ, Golding BT (2003) Tricyclic benzimidazoles as potent poly(ADP-ribose) polymerase-1 inhibitors. J Med Chem 46:210–213

    CAS  Google Scholar 

  41. Rao A, Chimirri A, De Clercq E, Monforte AM, Monforte P, Pannecouque C, Zappalà M (2002) Synthesis and anti-HIV activity of 1-(2,6-difluorophenyl)-1H,3Hthiazolo[3,4-a]benzimidazole structurally-related 1,2-substituted benzimidazoles. Il Farmco. 57:819–823

    CAS  Google Scholar 

  42. Sun Q, Wu R, Cai S, Lin Y, Sellers L, Sakamoto K, He B, Peterson BR (2011) Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV. J Med Chem 54:1126–1139

    CAS  Google Scholar 

  43. Ueda K, Amaike K, Maceiczyk RM, Itami K, Yamaguchi J (2014) β-selective C-H arylation of pyrroles leading to concise syntheses of lamellarins C and I. J Am Chem Soc 136:13226–13232

    CAS  Google Scholar 

  44. Young IS, Thornton PD, Thompson A (2010) Synthesis of natural products containing the pyrrolic ring. Nat Prod Rep 27:1801–1839

    CAS  Google Scholar 

  45. Roth BD (2002) The discovery and development of atorvastatin, a potent novel hypolipidemic agent. Prog Med Chem 40:1–22

    CAS  Google Scholar 

  46. Fürstner A, Domostoj MM, Scheiper B (2005) Total synthesis of dictyodendrinB. J Am Chem Soc 127:11620–11621

    Google Scholar 

  47. Zhang W, Liu Z, Li S, Yang T, Zhang Q, Ma L, Tian X, Zhang H, Huang C, Zhang S, Ju J, Shen Y, Zhang C (2012) Spiroindimicins A-D: new bisindole alkaloids from a deep-sea-derived actinomycete. Org Lett 14:3364–3367

    CAS  Google Scholar 

  48. Beck EM, Hatley R, Gaunt MJ (2008) Synthesis of rhazinicine by a metal-catalyzed C-H bond functionalization strategy. Angew Chem Int Ed 47:3004–3007

    CAS  Google Scholar 

  49. Chen L, Min H, Zeng W, Zhu X, Liang Y, Deng G, Yang Y (2018) Transition-metal-free sulfuration/annulation of alkenes: economical access to thiophenes enabled by the cleavage of multiple C-H bonds. Org Lett 20:7392–7395

    CAS  Google Scholar 

  50. Davis RA, Buchanan MS, Duffy S, Avery VM, Charman SA, Charman WN, White KL, Shackleford DM, Edstein MD, Andrews KT, Camp D, Quinn RJ (2012) Antimalarial activity of pyrroloiminoquinones from the australian marine sponge Zyzzya sp. J Med Chem 55:5851–5858

    CAS  Google Scholar 

  51. Nichick MN, Voitekhovich SV, Lesnyak V, Matulis VE, Zheldakova RA, Lesnikovich AI, Ivashkevich OA (2011) 1-Substituted tetrazole-5-thiol-capped noble metal nanoparticles. J Phys Chem C 115:16928–16933

    CAS  Google Scholar 

  52. Michael JP (2008) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 25:166–187

    CAS  Google Scholar 

  53. Barluenga J, Rodriguez F, Fananas FJ (2009) Recent advances in the synthesis of indole and quinoline derivatives through cascade reactions. Chem Asian J 4:1036–1048

    CAS  Google Scholar 

  54. Michael JP (2007) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 24:223–246

    CAS  Google Scholar 

  55. Koen A, Peter V, Jerome G, Hinrich WHG, Marc NJ, Hans W, Van GJ, Philip T, Min Z, Ennis L, Peter W, de Didier C, Emma H, Sven H, Emmanuelle C, Chantal TP, Nacer L, Vincent J (2005) A Diarylquinoline drug active on the ATP synthesis of synthase of mycobacterium tuberculosis. Science 307:223–227

    Google Scholar 

  56. Rouffet M, de Oliveira CAF, Udi Y, Agrawal A, Sagi I, McCammon JA, Cohen SM (2010) From sensors to silencers: quinoline- and benzimidazole-sulfonamides as inhibitors for zinc proteases. J Am Chem Soc 132:8232–8233

    CAS  Google Scholar 

  57. Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, Giordano I, Hann MM, Hennessy A, Hibbs M, Huang J, Jones E, Jones J, Brown KK, Lewis CJ, May EW, Saunders MR, Singh O, Spitzfaden CE, Shen C, Shillings A, Theobald AJ, Wohlkonig A, Pearson ND, Gwynn MN (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466:935–940

    Google Scholar 

  58. Alajarín R, Burgos C (2011) Modern heterocyclic chemistry. In: Alvarez- Builla J, Vaquero JJ, Barluenga J (eds) Wiley-VCH, Weinheim, vol 3, pp 1527–1629

    Google Scholar 

  59. Kletsas D, Li W, Han Z, Papadopoulos V (2004) Peripheral-type benzodiazepine receptor (PBR) and PBR drug ligands in fibroblast and fibrosarcoma cell proliferation: role of ERK, c-Jun and ligand-activated PBR-independent pathways. Biochem Pharmacol 67:1927–1932

    CAS  Google Scholar 

  60. Walsh CT, Garneau-Tsodikova S, Howard-Jones AR (2006) Biological formation of pyrroles: nature's logic and enzymatic machinery. Nat Prod Rep 23:517–531

    Google Scholar 

  61. Fürstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew Chem Int Ed 42:3582–3603

    Google Scholar 

  62. Khann IK, Yu Y, Huff RM, Weier RM, Xu X, Koszyk FJ, Collins PW, Cogburn JN, Lsakson PC, Koboldt CM, Masferrer JL, Perkins WE, Seibert K, Veenhuizen AW, Yuan J, Yang D, Zhang YY (2000) Selective cyclooxygenase-2 inhibitors: Heteroaryl modified 1,2-diarylimidazoles are potent, orally active antiinflammatory agents. J Med Chem 43:3168–3185

    Google Scholar 

  63. Shin J, Rho JR, Seo Y, Lee HS, Cho KW, Kwon HJ, Sim CJ (2001) Wondonins A and B, new bis (dihydroxystyryl) imidazoles from a two-sponge association. Tetrahedron Lett 42:1965–1968

    CAS  Google Scholar 

  64. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    CAS  Google Scholar 

  65. Pastor IM, Yus M (2009) Bioactive N-phenylimidazole derivatives. Curr Chem Bio 3:385–408

    Google Scholar 

  66. Kon Y, Kubota T, Shibazaki A, Gonoi T, Kobayashi J (2010) Ceratinadins A-C, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Bioorg Med Chem Lett 20:4569–4572

    CAS  Google Scholar 

  67. Molina P, Tárraga A, Otón F (2012) Imidazole derivatives: a comprehensive survey of their recognition properties. Org Biomol Chem 10:1711–1724

    CAS  Google Scholar 

  68. El-Garhy OH (2014) An overview of the azoles of interest. Int J Curr Pharm Res 7:1–6

    Google Scholar 

  69. Gao H, Shreeve JM (2011) Azole-based energetic salts. Chem Rev 111:7377–7436

    CAS  Google Scholar 

  70. Nfor EN, Asobo PF, Nenwa J, Nfor ON, Njapba JN, Njong RN, Offiong OE (2013) Nickel (II) and iron (II) complexes with azole derivatives: synthesis, crystal structures and antifungal activities. Int J Inorg Chem. https://doi.org/10.1155/2013/987574

    Article  Google Scholar 

  71. Sandhu SS, Shukla H, Aharwal R, Kumar S, Shukla S (2014) Antifungal azole derivatives and their pharmacological potential: prospects & retrospect. The Nat Prod J 4:140–152

    CAS  Google Scholar 

  72. Maertens JA (2004) History of the development of azole derivatives. Clin Microbiol Infect 1:1–10

    Google Scholar 

  73. Dwoskin LP, Jewell AL, Cassis LA (1992) DuP 753, a nonpeptide angiotensin II-1 receptor antagonist, alters dopaminergic function in rat striatum. Arch Pharmacol 345:153–159

    CAS  Google Scholar 

  74. Hill RA (2009) Marine natural products. Annu Rep Prog Chem, Sect B Org Chem 105:150–166

    Google Scholar 

  75. Forte B, Malgesini B, Piutti C, Quartieri F, Scolaro A, Papeo G (2009) A submarine journey: the pyrroleimidazole alkaloids. Mar Drugs 7:705–753

    CAS  Google Scholar 

  76. Jin Z (2011) Muscarine, imidazole, oxazole, and thiazole alkaloids. Nat Prod Rep 28:1143–1191

    CAS  Google Scholar 

  77. Gao G, Xiao R, Yuan Y, Zhou CH, You JS, Xie RG (2002) Efficient imidazolium catalysts for the benzoin condensation. J Chem Res 2002:262–263

    Google Scholar 

  78. Jiang HY, Zhou CH, Luo K, Chen H, Lan JB, Xie RG (2006) Chiral imidazole metalloenzyme models: Synthesis and enantioselective hydrolysis for a-amino acid esters. J Mol Catal A Chem 260:288–294

    CAS  Google Scholar 

  79. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 57:10257–10274

    Google Scholar 

  80. Miller RD, Lee VY, Moylan CR (1994) Substituted azole derivatives as nonlinear optical chromophores. Chem Mater 6:1023–1032

    CAS  Google Scholar 

  81. Zhang L, Peng X-M, Damu GLV, Geng R-X, Zhou C-H (2014) Comprehensive review in current developments of imidazole‐based medicinal chemistry. Med Res Rev 34:340–437

    Google Scholar 

  82. Aleksandrova EV, Kravchenko AN, Kochergin PM (2011) Properties of haloimidazoles. Chem Heterocycl Compd 47:261–289

    CAS  Google Scholar 

  83. Narasimhan B, Sharma D, Kumar P (2011) Biological importance of imidazole nucleus in the new millennium. Med Chem Res 20:1119–1140

    CAS  Google Scholar 

  84. Shalini K, Sharma PK, Kumar N (2010) Imidazole and its biological activities: a review. Chem Sinica 1:36–47

    CAS  Google Scholar 

  85. Bhatnagar A, Sharma PK, Kumar N (2011) A review on “Imidazoles”: their chemistry and pharmacological potentials. Int J PharmTech Res 3:268–282

    CAS  Google Scholar 

  86. Zhou CH, Gan LL, Zhang YY, Zhang FF, Wang GZ, Jin L, Geng RX (2009) Review on supermolecules as chemical drugs. Sci China Ser B 52:415–458

    CAS  Google Scholar 

  87. Zhou CH, Zhang YY, Yan CY, Wan K, Gan LL, Shi Y (2010) Recent researches in metal supramolecular complexes as anticancer agents. Anticancer Agents Med Chem 10:371–395

    CAS  Google Scholar 

  88. Faulkner DJ (2000) Marine natural products. Nat Prod Rep 17:7–55

    CAS  Google Scholar 

  89. Ho JZ, Mohareb RM, Ahn JH, Sim TB, Rapoport H (2003) Enantiospecific synthesis of carbapentostatins. J Org Chem 68:109–114

    CAS  Google Scholar 

  90. Lombardino JG, Wiseman EH (1974) Preparation and anti-inflammatory activity of some nonacidic trisubstituted imidazoles. J Med Chem 17:1182–1188

    CAS  Google Scholar 

  91. Lo YS, Nolan JC, Maren TH, Welstead WJ Jr, Gripshover DF, Shamblee DA (1992) Synthesis and physiochemical properties of sulfamate derivatives as topical antiglaucoma agents. J Med Chem 35:4790–4794

    CAS  Google Scholar 

  92. Bertini I, Sigel A, Sigel H (2001) Handbook on metalloproteins. Marcel Dekker, New York, J Am Chem Soc 123:12748–12748

    Google Scholar 

  93. El khoury Y, Hellwig P (2009) Infrared spectroscopic characterization of copper-polyhistidine from 1,800 to 50 cm-1: model systems for copper coordination. J Biol Inorg Chem 14:23–24

    Google Scholar 

  94. Schmiedekamp A, Nanda V (2009) Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function. J Inorg Biochem 103:1054–1060

    CAS  Google Scholar 

  95. Abdelhamid RF, Obara Y, Uchida Y, Kohzuma T, Dooley DM, Brown DE, Hori H (2007) π–π interaction between aromatic ring and copper-coordinated His81 imidazole regulates the blue copper active-site structure. J Biol Inorg Chem 12:165–173

    CAS  Google Scholar 

  96. Greiner BA, Marshall NM, NarducciSarjeant AA, McLauchlan CC (2007) Imidazole-based Nickel(II) and Cobalt(II) coordination complexes for potential use as models for histidine containing metalloproteins. Inorg Chim Acta 360:3132–3140

    Google Scholar 

  97. Patel DP, Swink SM, Castelo-Soccio L (2017) A review of the use of biotin for hair loss. Skin Appendage Disord 3:166–169

    Google Scholar 

  98. Sarper O, Bulak E, Kaim W, Varnali T (2006) Modeling bis-(1-methylimidazol-2-yl)glyoxal, ‘big’, in complex ions [M(big)2]+n, M=Au, Pt, Cu, Re, Zn: a DFT study. Mol Phys 104:833–838

    CAS  Google Scholar 

  99. Showalter HDH, Johnson JL, Hoftiezer JM (1987) Anthrapyrazole anticancer agents. Synthesis and structureactivity relationships against murine leukemias. J Med Chem 30:121–131

    Google Scholar 

  100. Tewari AK, Mishra A (2001) Synthesisandanti-inflammatory activities of N4, N5-disubstituted-3-methyl-1H-pyrazolo[3,4c]pyridazines. Bioorg Med Chem 9:715–718

    CAS  Google Scholar 

  101. Larsen JS, Zahran MA, Pedersen EB, Nielsen C (1999) Synthesis of triazenopyrazole derivatives as potential inhibitors of HIV-1. Monatshefte für Chemie 130:1167–1173

    CAS  Google Scholar 

  102. Michon V, Penhoat CH, Tombret F, Gillardin JM, Lepage F, Erthon L (1995) Preparation, structural analysis and anticonvulsant activity of 3- and 5-aminopyrazole N-benzoyl derivatives. Eur J Med Chem 30:147–155

    Google Scholar 

  103. Yıldırım I, Özdemir N, Akçamur Y, Dinçer M, Andaç O (2005) 4-Benzoyl-1,5-diphenyl-1H-pyrazole-3-carboxylic acid methanol solvate. Acta Crystallogr 61:256–258

    Google Scholar 

  104. Bailey DM, Hansen PE, Hlavac AG (1985) 3,4-Di phenyl 1H-pyrazole-1-propanamine antidepressants. J Med Chem 28:256–260

    CAS  Google Scholar 

  105. Chu CK, Cutler SJ (1986) Chemistry and antiviral activities of acyclonucleosides. J Heterocycl Chem 23:289–319

    CAS  Google Scholar 

  106. Bahal SC, Dubey BL, Nath N, Srivastava JK (1984) Synthesis, characterisation and fungitoxicity of the complexes of Hg(II), Cd(II), Cu(II) and Ag(I) with 3-o-tolyoxymethyl-4aryl-5-mercapto-1,2,4-triazole. Inorg Chim Acta 91:43–45

    Google Scholar 

  107. Joukhadar C, Klein N, Mader RM, Schrolnberger C, Rizovski B, Heere-Ress E, Pehamberger H, Strauchmann N, Jansen B, Műller M (2001) Penetration of dacarbazine and its active metabolite 5-aminoimidazole-4-carboxamide into cutaneous metastases of human malignant melanoma. Cancer 92:2190–2196

    CAS  Google Scholar 

  108. Hamdy RC (2010) Zoledronic acid: clinical utility and patient considerations in osteoporosis and low bone mass. Drug Des Devel Ther 4:321–335

    CAS  Google Scholar 

  109. Erick Cuevas Yañez EC, Sánchez AC, Becerra JMS, Muchowski JM, Almanza RC (2004) Synthesis of miconazole and analogs through a carbenoid intermediate. Rev Soc Quím Méx 48:49–52

    Google Scholar 

  110. Rossello A, Bertini S, Lapucci A, Macchia M, Martinelli A, Rapposelli S, Herreros E, Macchia B (2002) Synthesis, antifungal activity, and molecular modeling studies of new inverted oxime ethers of oxiconazole. J Med Chem 45:4903–4912

    CAS  Google Scholar 

  111. Atia AJ (2009) Synthesis and antibacterial activities of new metronidazole and imidazole derivatives. Molecules 14:2431–2446

    CAS  Google Scholar 

  112. Huang X-S, Liu K, Yin Y, Li W-M, Ran W, Duan M, Wang L-S, Zhu H-L (2011) The synthesis, structure and activity evaluation of secnidazole derivatives as helicobacter pylori urease inhibitors. Curr Bioact Compd 7:268–280

    CAS  Google Scholar 

  113. Balraj C, Satheshkumar A, Ganesh K, El-Mossalamy EH, Elango KP (2013) Synthesis and characterization of molecular complexes of cimetidine with water soluble 1,4-benzoquinones. J Mol Struct 1050:166–173

    Google Scholar 

  114. Gerlach AT, Dasta JF (2007) Dexmedetomidine: an updated review. Ann Pharmacother 41:245–252

    Google Scholar 

  115. Burnier M, Wuerzner G (2011) Pharmacokinetic evaluation of losartan. Expert Opin Drug Metab Toxicol 7:643–649

    CAS  Google Scholar 

  116. Ghannoum MA, Rice LB (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517

    CAS  Google Scholar 

  117. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    Google Scholar 

  118. Lamb D, Kelly D, Kelly S (1999) Molecular aspects of azole antifungal action and resistance. Drug Resist Updates 2:390–402

    CAS  Google Scholar 

  119. Emami S, Tavangar P, Keighobadi M (2017) An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy. Eur J Med Chem 135:241–259

    CAS  Google Scholar 

  120. Georgopapadakou NH, Walsh TJ (1996) Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob Agents Chemother 40:279–291

    Google Scholar 

  121. Yang H, Tong J, Lee CW, Ha S, Eom SH, Im YJ (2015) Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nat Commun 6:6129

    CAS  Google Scholar 

  122. Balding PR, Porro CS, McLean KJ, Sutcliffe MJ, Maréchal JD, Munro AW, Visser SPD (2008) How do azoles inhibit cytochrome P450 enzymes? A density functional study. J Phys Chem A 112:12911–12918

    CAS  Google Scholar 

  123. Gupta VK, Sharma AK, Sharma R, Diwan S, Saini S (2014) Azoles as effective antifungal agents: trends, scope and relevance. The Nat Prod J 4:82–92

    CAS  Google Scholar 

  124. Blobaum AL, Marnett LJ (2007) Structural and functional basis of cyclooxygenase inhibition. J Med Chem 50:1425–1441

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandi C. Malakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabi, A.K. et al. (2022). An Introduction on Evolution of Azole Derivatives in Medicinal Chemistry. In: Swain, B.P. (eds) Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-8399-2_4

Download citation

Publish with us

Policies and ethics