Skip to main content

Nanocarriers as Drug Delivery Vectors

  • Chapter
  • First Online:
Nanostructured Biomaterials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 495 Accesses

Abstract

This book chapter gives a concise description of various nanocarriers for drug delivery to a specific site. Liposomes, solid lipids, polymers and dendrimers are potential nanocarriers for drug delivery described here. Nanocarriers-based drugs delivery to the specific site is frequently accomplished through active or passive strategies. Liposomes are the first kind of nanocarriers. A drug is often encapsulated within the liposome and is often successively released from the drug by altering physical factors. Liposomes are also efficient to deliver genetic materials to a specific site. Solid lipid-based nanocarriers can transport equally hydrophilic and hydrophobic drugs and are more reasonable than surfactant or polymer-based nanocarriers. Functionalized amphiphilic polymers currently play a fundamental role in drug delivery skill progression by furnishing the controlled release of drugs. Dendritic molecules with a hydrophilic exterior surface and hydrophobic core demonstrate micelle-like features and act as nanocontainers for hydrophobic drugs. Progress in research based on nanocarriers for drug delivery will have a great future in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  2. Niemeyer CM (2004) Semi-synthetic DNA–protein conjugates: novel tools in analytics and nanobiotechnology. Biochem Soc Trans 32:51–53

    Article  CAS  Google Scholar 

  3. Blum AS, Soto CM, Wilson CD, Cole JD, Kim M, Gnade B, Chatterji A, Ochoa WF, Lin T, Johnson JE, Ratna BR (2004) Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett 4:867–870

    Article  CAS  Google Scholar 

  4. Losic D, Mitchell JG, Voelcker NH (2005) Complex gold nanostructures derived by templating from diatom frustules. Chem Commun, 4905–4907

    Google Scholar 

  5. Petty JT, Zheng J, Hud NV, Dickson RM (2004) DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212

    Article  CAS  Google Scholar 

  6. Fu A, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) Discrete nanostructures of quantum dots/Au with DNA. J Am Chem Soc 126:10832–10833

    Article  CAS  Google Scholar 

  7. Behrens S, Rahn K, Habicht W, Bohm K-J, Rosner H, Dinjus E, Unger E (2002) Nanoscale particle arrays induced by highly ordered protein assemblies. Adv Mater 14:1621–1625

    Article  CAS  Google Scholar 

  8. Mirkin CA, Storhoff JJ (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862

    Article  Google Scholar 

  9. Wang EC, Wang AZ (2014) Nanoparticles and their applications in cell and molecular biology. Integr Biol 6:9–26

    Article  CAS  Google Scholar 

  10. Siddique S, Chow JCL (2020) Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials 10:1700(1)–1700(40)

    Google Scholar 

  11. Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5:447–451

    Article  CAS  Google Scholar 

  12. Ghasemiyeh P, Mohammadi-Samani S (2018) Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci. 13:288–303

    Article  Google Scholar 

  13. Puri A, Loomis K, Smith B, Lee J-H, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26:523–580

    Article  CAS  Google Scholar 

  14. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA., Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71(1)–71(33)

    Google Scholar 

  15. Golombek SK, May J-N, Theek B, Appold L, Drude N, Kiessling F, Lammers T (2018) Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev 130:17–38

    Article  CAS  Google Scholar 

  16. Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP (2012) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 159:393–402

    Article  CAS  Google Scholar 

  17. Mahtab R, Harden HH, Murphy CJ (2000) Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”−DNA interactions. J Am Chem Soc 122:14–17

    Google Scholar 

  18. Balazs DA, Godbey WT (2011) Liposomes for use in gene delivery. J Drug Deliv, 326497(1)–326497(12)

    Google Scholar 

  19. Rodrigues BDS, Banerjee A, Kanekiyo T, Singh J (2019) Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. Int J Pharm 566:717–730

    Article  Google Scholar 

  20. McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Rotello VM (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123:7626–7629

    Article  CAS  Google Scholar 

  21. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15:897–900

    Article  CAS  Google Scholar 

  22. Hong R, Emrick T, Rotello VM (2004) Monolayer-controlled substrate selectivity using noncovalent enzyme−nanoparticle conjugates. J Am Chem Soc 126:13572–13573

    Article  CAS  Google Scholar 

  23. Gershon H, Ghirlando R, Guttman SB, Minsky A (1993) Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry 32:7143–7151

    Article  CAS  Google Scholar 

  24. Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099

    Article  CAS  Google Scholar 

  25. Smith JG, Walzem RL, German JB (1993) Liposomes as agents of DNA transfer. Biochim Biophys Acta 1154:327–340

    Article  CAS  Google Scholar 

  26. Duzgunes N, Goldstein JA, Friend DS, Felgner PL (1989) Fusion of liposomes containing a novel cationic lipid, N-[2,3-(dioleyloxy)propyl]-N, N, N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles. Biochemistry 28:9179–9184

    Article  CAS  Google Scholar 

  27. Farhood H, Serbina N, Huang L (1995) The role of dioleoylphosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1235:289–295

    Article  Google Scholar 

  28. Mislick KA, Baldeschweiler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA 93:12349–12354

    Article  CAS  Google Scholar 

  29. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007

    Article  CAS  Google Scholar 

  30. Zelphati O, Szoka FC Jr (1996) Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm Res 13:1367–1372

    Article  CAS  Google Scholar 

  31. Friend DS, Papahadjopoulos D, Debs RJ (1996) Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta 1278:41–50

    Article  Google Scholar 

  32. Verkleij AJ (1984) Lipidic intramembranous particles. Biochim Biophys Acta 779:43–63

    Article  CAS  Google Scholar 

  33. Allen TM, Hong K, Papahadjopoulos D (1990) Membrane contact, fusion and hexagonal (HII) transitions in phosphatidylethanolamine liposomes. Biochemistry 29:2976–2985

    Article  CAS  Google Scholar 

  34. Pires P, Simões S, Nir S, Gaspar R, Düzgünes N, de Lima MCP (1999) Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Biochim Biophys Acta 1418:71–84

    Article  CAS  Google Scholar 

  35. Pöyry S, Vattulainen I (2016) Role of charged lipids in membrane structures - Insight given by simulations. Biochim Biophys Acta 1858:2322–2333

    Article  Google Scholar 

  36. Xu Y, Szoka FC Jr (1996) Mechanism of DNA Release from Cationic Liposome/DNA Complexes Used in Cell Transfection. Biochemistry 35:5616–5623

    Article  CAS  Google Scholar 

  37. Fenske DB, Cullis PR (1992) Chemical exchange between lamellar and non-lamellar lipid phases. a one- and two-dimensional 31P-NMR study. Biochim Biophys Acta 1108:201–209

    Google Scholar 

  38. Sanderson PW, Williams WP, Cunningham BA, Wolfe DH, Lis LJ (1993) The effect of ice on membrane lipid phase behaviour. Biochim Biophys Acta 1148:278–284

    Article  CAS  Google Scholar 

  39. Hippalgaonkar K, Majumdar S, Kansara V (2010) Injectable Lipid Emulsions-Advancements, Opportunities and Challenges. AAPS PharmSciTech 11:1526–1540

    Article  CAS  Google Scholar 

  40. Raya SA, Saaid IM, Ahmed AA, Umar AA (2020) A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. J Pet Explor Prod Technol 10:1711–1728

    Article  CAS  Google Scholar 

  41. ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–7309

    Google Scholar 

  42. García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C, López-Romero JM (2019) Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials 9:638(1)–638(23).

    Google Scholar 

  43. Zariwala MG, Elsaid N, Jackson TL, López FC, Farnaud S, Somavarapu S, Renshaw D (2013) A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles. Int J Pharm 456:400–407

    Article  CAS  Google Scholar 

  44. Shah MK, Madan P, Lin S (2014) Preparation, evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticle for lymphatic absorption via oral administration. Pharm Dev Technol 19:475–485

    Article  CAS  Google Scholar 

  45. Pandey R, Sharma S, Khuller GK (2005) Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis 85:415–420

    Article  CAS  Google Scholar 

  46. Arana L, Salado C, Vega S, Aizpurua-Olaizola O, de la Arada I, Suarez T, Usobiaga A, Arrondo JLR, Alonso A, Goñi FM, Alkorta I (2015) Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids Surf B Biointerfaces 135:18–26

    Article  CAS  Google Scholar 

  47. Seyfoddin A, Shaw J, Al-Kassas R (2010) Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 17:467–489

    Article  CAS  Google Scholar 

  48. Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71:349–358

    Article  CAS  Google Scholar 

  49. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez‑Torres MDP, Acosta‑Torres LS, Diaz‑Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71(1)–71(33)

    Google Scholar 

  50. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    Article  CAS  Google Scholar 

  51. Chen S, Zhang XZ, Cheng SX, Zhuo RX, Gu ZW (2008) Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromol 9:2578–2585

    Article  CAS  Google Scholar 

  52. Morita T, Horikiri Y, Suzuki T, Yoshino H (2001) Applicability of various amphiphilic polymers to the modification of protein release kinetics from biodegradable reservoir-type microspheres. Eur J Pharm Biopharm 51:45–53

    Article  CAS  Google Scholar 

  53. Abbina S, Vappala S, Kumar P, Siren EMJ, La CC, Abbasi U, Brooks DE, Kizhakkedathu JN (2017) Hyperbranchedpolyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B 5:9249–9277

    Article  CAS  Google Scholar 

  54. Kaanumalle LS, Ramesh R, Maddipatla VSNM, Nithyanandhan J, Jayaraman N, Ramamurthy V (2005) Dendrimers as photochemical reaction media. Photochemical behavior of unimolecular and bimolecular reactions in water-soluble dendrimers. J Org Chem 70:5062–5069

    Google Scholar 

  55. Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 6:139–150

    Article  Google Scholar 

  56. Tomalia DA, Naylor AM, Goddard WA III (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29:138–175

    Article  Google Scholar 

  57. Fréchet JM (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263:1710–1715

    Article  Google Scholar 

  58. Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Micelles Part 1. Cascade molecules: a new approach to micelles, A-arborol. J Org Chem 50:155–158

    Google Scholar 

  59. Choudhary S, Gupta L, Rani S, Dave K, Gupta U (2017) Impact of dendrimers on solubility of hydrophobic drug molecules. Front Pharmacol 8:261(1)–261(23)

    Google Scholar 

  60. Stevelmens S, Hest JC, Jansen JF, Boxtel DA, de Bravander-van den B, Miejer EW (1996) Synthesis, characterization and guest-host properties of inverted unimolecular micelles. J Am Chem Soc 118:7398–7399

    Google Scholar 

  61. Gupta U, Agashe HB, Asthana A, Jain NK (2006) Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromol 7:649–658

    Article  CAS  Google Scholar 

  62. Thomas TP, Majoros IJ, Kotlyar A, Kukowska-Latallo JF, Bielinska A, Myc A, Baker JR (2005) Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 48:3729–3735

    Article  CAS  Google Scholar 

  63. Bhadra D, Bhadra S, Jain P, Jain NK (2002) Pegnology: a review of PEG-ylated systems. Pharmazie 57:5–29

    CAS  Google Scholar 

  64. Asthana A, Chauhan AS, Diwan PV, Jain NK (2005) Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech 6:E536–E542

    Article  Google Scholar 

  65. Bhadra D, Bhadra S, Jain S, Jain NK (2003) A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 257:111–124

    Google Scholar 

  66. Khopade AJ, Caruso F, Tripathi P, Nagaich S, Jain NK (2002) Effect of dendrimer on entrapment and release of bioactive from liposomes. Int J Pharm 232:157–162

    Article  CAS  Google Scholar 

  67. Prajapati RN, Tekade RK, Gupta U, Gajbhiye V, Jain NK (2009) Dendrimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Mol Pharm 6:940–950

    Article  CAS  Google Scholar 

  68. Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, Diwan PV (2003) Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release 90:335–343

    Article  CAS  Google Scholar 

  69. Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324

    Article  CAS  Google Scholar 

  70. Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mulé J, Baker JR Jr (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19:1310–1316

    Article  CAS  Google Scholar 

  71. Toms S, Carnachan SM, Hermans IF, Johnson KD, Khan AA, O’Hagan SE, Tang C-W, Rendle PM (2016) Poly ethoxy ethyl glycinamide (PEE-G) dendrimers: dendrimers specifically designed for pharmaceutical applications. ChemMedChem 11:1583–1586

    Article  CAS  Google Scholar 

  72. Shrestha R, Teesdale-Spittle PH, Lewis AR, Rendle PM (2020) Gadolinium complexes attached to poly ethoxy ethyl glycinamide (PEE-G) dendrons: magnetic resonance imaging contrast agents with increased relaxivity. ChemPlusChem 85:1881–1892

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, J., Datta, B. (2022). Nanocarriers as Drug Delivery Vectors. In: Swain, B.P. (eds) Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-8399-2_2

Download citation

Publish with us

Policies and ethics