Skip to main content

Introduction

  • Chapter
  • First Online:
Machine Learning

Abstract

Consider waking up one winter morning in Finland and looking outside the window. It seems to become a nice sunny day which is ideal for a ski trip. To choose the right gear (clothing, wax) it is vital to have some idea for the maximum daytime temperature which is typically reached around early afternoon. If we expect a maximum daytime temperature of around plus 5 degrees, we might not put on the extra warm jacket but rather take only some extra shirt for change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Mitchell, The need for biases in learning generalizations. Technical Report CBM-TR 5-110 (Rutgers University, New Brunswick, 1980)

    Google Scholar 

  2. W. Rudin, Principles of Mathematical Analysis, 3rd edn. (McGraw-Hill, New York, 1976)

    MATH  Google Scholar 

  3. G. Strang, Introduction to Linear Algebra, 5th edn. (Wellesley-Cambridge Press, Wellesley, MA, 2016)

    MATH  Google Scholar 

  4. S. Sra, S. Nowozin, S.J. Wright (eds.), Optimization for Machine Learning (MIT Press, Cambridge, 2012)

    MATH  Google Scholar 

  5. L. Pitt, L.G. Valiant, Computational limitations on learning from examples. J. ACM 35(4), 965–984 (1988)

    Article  MathSciNet  Google Scholar 

  6. L.G. Valiant, A theory of the learnable, in Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, STOC ’84 (Association for Computing Machinery, New York, 1984), pp. 436–445

    Google Scholar 

  7. C. Millard (ed.), Cloud Computing Law 2nd edn. (Oxford University Press, Oxford, 2021)

    Google Scholar 

  8. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, MD, 1996)

    MATH  Google Scholar 

  9. G. Strang, Computational Science and Engineering (Wellesley-Cambridge Press, Wellesley, MA, 2007)

    MATH  Google Scholar 

  10. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, MA, 2016)

    MATH  Google Scholar 

  11. N. Tishby, N. Zaslavsky, Deep learning and the information bottleneck principle, in 2015 IEEE Information Theory Workshop (ITW) (IEEE, New York, 2015), pp. 1–5

    Google Scholar 

  12. C.E. Shannon, Communication in the presence of noise (1948)

    Google Scholar 

  13. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, Hoboken, NJ, 2006)

    MATH  Google Scholar 

  14. A.E. Gamal, Y.-H. Kim, Network Information Theory (Cambridge University Press, New York, 2012)

    Google Scholar 

  15. W. Wang, M.J. Wainwright, K. Ramchandran, Information-theoretic bounds on model selection for Gaussian Markov random fields, in Proc. IEEE ISIT-2010 (IEEE, New York, 2010), pp. 1373–1377

    Google Scholar 

  16. M.J. Wainwright, Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting. IEEE Trans. Inf. Theory 55(12), 5728–5741 (2009). (Dec.)

    Article  MathSciNet  Google Scholar 

  17. N.P. Santhanam, M.J. Wainwright, Information-theoretic limits of selecting binary graphical models in high dimensions. IEEE Trans. Inf. Theory 58(7), 4117–4134 (2012). (Jul.)

    Article  MathSciNet  Google Scholar 

  18. N. Tran, O. Abramenko, A. Jung, On the sample complexity of graphical model selection from non-stationary samples. IEEE Transactions on Signal Processing 68, 17–32 (2020)

    Article  MathSciNet  Google Scholar 

  19. A. Jung, Y. Eldar, N. Görtz, On the minimax risk of dictionary learning. IEEE Trans. Inf. Theory 62(3), 1501–1515 (2016). (Mar.)

    Article  MathSciNet  Google Scholar 

  20. B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-efficient learning of deep networks from decentralized data, in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, ed. by A. Singh, J. Zhu, vol. 54 of Proceedings of Machine Learning Research (PMLR, 2017), pp. 1273–1282

    Google Scholar 

  21. V. Smith, C.-K. Chiang, M. Sanjabi, A. Talwalkar, Federated multi-task learning, in Advances in Neural Information Processing Systems, vol. 30, (MIT Press, Cambridge, MA, 2017)

    Google Scholar 

  22. F. Sattler, K. Müller, W. Samek, Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints, in IEEE Transactions on Neural Networks and Learning Systems (IEEE, New York, 2020)

    Google Scholar 

  23. Y. SarcheshmehPour, M. Leinonen, A. Jung, Federated learning from big data over networks, in Proceedings of the IEEE International Conferences on Acoustics, Speech and Signal Processing (ICASSP). Preprint at https://arxiv.org/pdf/2010.14159.pdf

  24. D. Bertsekas, J. Tsitsiklis, Introduction to Probability, 2nd edn. (Athena Scientific, Belmont, 2008)

    Google Scholar 

  25. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in Proc. Neural Inf. Proc. Syst. (NIPS) (2014)

    Google Scholar 

  26. S.J. Russel, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edn. (Prentice Hall, New York, 2010)

    Google Scholar 

  27. D. Cohn, Z. Ghahramani, M. Jordan, Active learning with statistical models. J. Artif. Int. Res. 4(1), 129–145 (1996). (March)

    MATH  Google Scholar 

  28. A. Sorokin, D. Forsyth, Utility data annotation with amazon mechanical turk, in 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (IEEE, New York, 2008), pp. 1–8

    Google Scholar 

  29. R. Sutton, A. Barto, Reinforcement Learning: An Introduction, 2nd edn. (MIT press, Cambridge, MA, 2018)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Jung .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jung, A. (2022). Introduction. In: Machine Learning. Machine Learning: Foundations, Methodologies, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-8193-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8193-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8192-9

  • Online ISBN: 978-981-16-8193-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics