Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 152 Accesses

Abstract

In the past few decades, nanomaterials have caused a continuous and extensive research issue in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nie, Z., Petukhova, A., et al. (2010). Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 5(1), 15–25.

    Article  CAS  Google Scholar 

  2. Fahlman, B. D. (2007). Materials Chemistry, 1, 282–283 (Springer, Mount Pleasant).

    Google Scholar 

  3. Davis, M. E., et al. (2008). Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Review Drug Discovery, 7, 771–782.

    Article  CAS  Google Scholar 

  4. Robby, A., et al. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 8, 615–627.

    Google Scholar 

  5. Adachi, G., Imanaka, N., & Kang, Z. C. (2004). Binary Rare Earth Oxides, 1, 125–126 (Springer, Kluwer, Academic Publishers).

    Google Scholar 

  6. Bouzigues, C., Gacoin, T., et al. (2011). Biological applications of rare-earth based nanoparticles. ACS Nano, 5(11), 8488–8505.

    Article  CAS  Google Scholar 

  7. Auzel, F., et al. (2004). Upconversion and anti-stokes processes with f and d ions in solids. Chem Reviews, 104(1), 139–173.

    Article  CAS  Google Scholar 

  8. Bloembergen, N. (1959). Solid state infrared quantum counters. Physical Review Letters, 2, 84–85.

    Article  CAS  Google Scholar 

  9. Auzel, F. (1966). Compteur Quantique Par Transfert D’énergie Entre Deux Ions De Terres Rares Dans Un Tungstate Mixte Et Dans Un Verre. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 262, 1016.

    Google Scholar 

  10. Yu, M. X., Li, F. Y., Chen, Z. G., Hu, H., Zhan, C., Yang, H., & Huang, C. H. (2009). Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Analytical Chemistry, 81(3), 930–935.

    Article  CAS  Google Scholar 

  11. Xiong, L. Q., Chen, Z. G., Tian, Q. W., Cao, T. Y., Xu, C. J., & Huang, C. H. (2009). High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Analytical Chemistry, 81(21), 8687–8694.

    Article  CAS  Google Scholar 

  12. Hu, H., Yu, M. X., Li, F. Y., Chen, Z. G., Gao, X., Xiong, L. Q., & Huang, C. H. (2008). Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chemistry of Materials, 20(22), 7003–7009.

    Article  CAS  Google Scholar 

  13. Michalet, X., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544.

    Article  CAS  Google Scholar 

  14. McCarthy, J. R., et al. (2008). Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced Drug Delivery Reviews, 60(11), 1241–1251.

    Article  CAS  Google Scholar 

  15. Gao, J. H., et al. (2009). Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Accounts of Chemical Research, 42(8), 1097–1107.

    Article  CAS  Google Scholar 

  16. Sharma, C. S., Sarkar, S., et al. (2007). Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanoscience and Nanotechnology, 7(7), 2466–2472.

    Article  CAS  Google Scholar 

  17. Toma, F. M., Sartorel, A., et al. (2010). Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. Nature Chemistry, 2(10), 826–831.

    Article  CAS  Google Scholar 

  18. Yamakoshi, Y., Umezawa, N., et al. (2003). Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2* versus 1O2. Journal of the Amerian Chemical Society, 125(42), 12803–12809.

    Article  CAS  Google Scholar 

  19. Corona-Morales, A. A., Castell, A., et al. (2003). Fullerene C60 and ascorbic acid protect cultured chromaffin cells against levodopa toxicity. Journal of Neuroscience Research, 71(1), 121–126.

    Article  CAS  Google Scholar 

  20. Nakanishi, I., Fukuzumi, S., et al. (2002). DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to gamma-cyclodextrin-bicapped C-60 in an oxygen-saturated aqueous solution. Journal of Physical Chemistry, 106(9), 2372–2380.

    Article  CAS  Google Scholar 

  21. Adlakha-Hutcheon, G., Bally, M. B., et al. (1999). Controlled destabilization of a liposomal drug delivery system enhances mitoxantrone antitumor activity. Nature Biotechnology, 17(8), 775–779.

    Article  CAS  Google Scholar 

  22. Wing, S. T., et al. (2011). Self-cleaning fibers via nanotechnology: A virtual reality. Journal of Materials Chemistry, 21(22), 7858–7869.

    Article  CAS  Google Scholar 

  23. Deng, Z. J., et al. (2011). Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology, 6(1), 39–44.

    Article  CAS  Google Scholar 

  24. Mikhaylov, G., Mikac, U., et al. (2011). Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotechnology, 6, 594–602.

    Article  CAS  Google Scholar 

  25. Patra, C. R., Bhattacharya, R., et al. (2008). Pro-angiogenic properties of europium(III) hydroxide nanorods. Advanced Materials, 20(4), 753.

    Article  CAS  Google Scholar 

  26. Hauck, T. S., Anderson, R. E., et al. (2010). In vivo quantum-dot toxicity assessment. Small (Weinheim an der Bergstrasse, Germany), 6(1), 138–144.

    Article  CAS  Google Scholar 

  27. Wang, F., Banerjee, D., et al. (2010). Upconversion nanoparticles in biological labeling, imaging, and therapy. The Analyst, 135(8), 1839–1854.

    Article  CAS  Google Scholar 

  28. Wang, F., Han, Y., et al. (2010). Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 463(7284), 1061–1065.

    Article  CAS  Google Scholar 

  29. Idris, N. M., Li, Z. Q., Ye, L., et al. (2009). Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterial, 30(28), 5104–5113.

    Article  CAS  Google Scholar 

  30. Jiang, S., & Zhang, Y. (2010). Upconversion nanoparticles-based FRET system for study of SiRNA in live cells. Langmuir, 26(9), 6689–6694.

    Article  CAS  Google Scholar 

  31. Xiong, L. Q., Chen, Z. G., et al. (2009). Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials, 30(29), 5592–5600.

    Article  CAS  Google Scholar 

  32. Ivanova, S., Pelle, F., et al. (2008). Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters. Journal of Luminescence, 128(5), 914–917.

    Article  CAS  Google Scholar 

  33. Suyver, J. F., Grimm, J., et al. (2006). Upconversion spectroscopy and properties of NaYF4 doped with Er (3+), Tm3+ and/or Yb3+. Journal of Luminescence, 117(1), 1–12.

    Article  CAS  Google Scholar 

  34. Wang, L. Y., & Li, Y. D. (2006). Green upconversion nanocrystals for DNA detection. Chemical Communications, (24), 2557–2559.

    Google Scholar 

  35. Lim, S. F., Riehn, R., et al. (2006). In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Letters, 6(2), 169–174.

    Article  CAS  Google Scholar 

  36. Hu, H., Yu, M. X., et al. (2008). Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chemistry of Materials, 20(22), 7003–7009.

    Article  CAS  Google Scholar 

  37. Chen, Z. G., Chen, H. L., et al. (2008). Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. Journal of the Amerian Chemistry Society, 130(10), 3023–3029.

    Article  CAS  Google Scholar 

  38. Liu, Z. Y., Yi, G. S., et al. (2008). Monodisperse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. Chemical Communications, 6, 694–696.

    Article  Google Scholar 

  39. Van de Rijke, F., Zijlmans, H., et al. (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology, 19(3), 273–276.

    Article  CAS  Google Scholar 

  40. Corstjens, P., Zuiderwijk, M., et al. (2001). Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: A rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clinical Chemistry, 47(10), 1885–1893.

    Article  CAS  Google Scholar 

  41. Chatteriee, D. K., Rufalhah, A. J., et al. (2008). Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 29(7), 937–943.

    Article  CAS  Google Scholar 

  42. Zhang, P., Steelant, W., et al. (2007). Versatile photosensitizers for photodynamic therapy at infrared excitation. Journal of the American Chemistry Society, 129(15), 4526.

    Article  CAS  Google Scholar 

  43. Chatterjee, D. K., & Yong, Z. (2008). Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine, 3(1), 73–82.

    Article  CAS  Google Scholar 

  44. Idris, N. M., Gnanasammandhan, M. K., et al. (2012). In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 18(10), 1580–1585.

    Article  CAS  Google Scholar 

  45. Jiang, S., Zhang, Y., Lim, K. M., Sim, E. K., & Ye, L. (2009). NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology, 20(15), 155101.

    Google Scholar 

  46. Lewinski, N., et al. (2008). Cytotoxicity of nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 4(1), 26–49.

    Article  CAS  Google Scholar 

  47. Nel, A., et al. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.

    Article  CAS  Google Scholar 

  48. Arora, S. (2011). Nanotoxicology and in vitro studies: The need of the hour. Toxicology and Applied Pharmacology, 258(2), 151–165.

    Article  CAS  Google Scholar 

  49. Martinet, W., Schrijvers, D. M., et al. (2009). Phagocytosis of bacteria is enhanced in macrophages undergoing nutrient deprivation. FEBS Journal, 276(8), 2227–2240.

    Article  CAS  Google Scholar 

  50. Jaeger, P. A., & Wyss-Coray, T. (2009). All-you-can-eat: Autophagy in neurodegeneration and neuroprotection. Molecular Neurodegeneration, 4, 16.

    Article  CAS  Google Scholar 

  51. Campoy, E., & Colombo, M. I. (2009). Autophagy in intracellular bacterial infection. Biochimica Et Biophysica Acta-Molecular Cell Research, 1793(9), 1465–1477.

    Article  CAS  Google Scholar 

  52. Takeshige, K., Baba, M., et al. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology, 119(2), 301–311.

    Article  CAS  Google Scholar 

  53. Matsuura, A., Tsukada, M., et al. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192(2), 245–250.

    Google Scholar 

  54. Mizushima, N., Yoshimori, T., et al. (2011). The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 27, 107–132.

    Article  CAS  Google Scholar 

  55. Liang, X. H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402, 672–676.

    Article  CAS  Google Scholar 

  56. Treasures, H. D. N. A. (2004). Area to watch in 2005. Science, 306, 2014.

    Article  Google Scholar 

  57. Klionsky, D. J. (2007). Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11), 931–937.

    Article  CAS  Google Scholar 

  58. Cuervo, A. M., & Dice, J. F. (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science, 273(5274), 501–503.

    Article  CAS  Google Scholar 

  59. Lynch-Day, M. A., Mao, K., et al. (2012). The role of autophagy in Parkinson’s disease. Cold Spring Harbor Perspectives Medicine, 2(4), a009357.

    Google Scholar 

  60. Melendez, A., & Levine, B. (2009). Autophagy in C. elegans. WormBook, 1, 1–26.

    Article  Google Scholar 

  61. Klionsky, D. T., et al. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 4(2), 151–175.

    Article  CAS  Google Scholar 

  62. Klionsky, D. T., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445–544.

    Article  CAS  Google Scholar 

  63. Eskelinen, E. L. (2005). Maturation of autophagic vacuoles in mammalian cells. Autophagy, 1(1), 1–10.

    Article  CAS  Google Scholar 

  64. Mizushima, N., Yoshimori, T., et al. (2010). Methods in mammalian autophagy research. Cell,140(3), 313–326.

    Google Scholar 

  65. Zheng, Q., Su, H., et al. (2011). Autophagy and p62 in cardiac proteinopathy novelty and significance. Circulation Research, 109(3), 296–308.

    Article  CAS  Google Scholar 

  66. Colosetti, P., Puissant, A., et al. (2009). Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy, 5(8), 1092–1098.

    Article  CAS  Google Scholar 

  67. Toepfer, N., Childress, C., et al. (2011). Atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription. Cancer Biology & Therapy, 12(8), 691–699.

    Article  CAS  Google Scholar 

  68. Klionsky, D. J., Cuervo, A. M., et al. (2007). Methods for monitoring autophagy from yeast to human. Autophagy, 3(3), 181–206.

    Article  CAS  Google Scholar 

  69. Pattingre, S., Petiot, A., et al. (2004). Analysis of Gα-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. Methods in Enzymology, 390, 17–31.

    Article  CAS  Google Scholar 

  70. Bauvy, C., Meijer, A. J., et al. (2009). Assaying of autophagic protein degradation. Methods in Enzymology, 452, 47–61.

    Article  CAS  Google Scholar 

  71. Degenhardt, K., et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10(1), 51–64.

    Article  CAS  Google Scholar 

  72. Robert, T., et al. (2011). HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 471, 74–79.

    Article  CAS  Google Scholar 

  73. Liang, X. H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762), 672–676.

    Article  CAS  Google Scholar 

  74. Mathew, R., et al. (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes and Development, 21, 1367–1381.

    Article  CAS  Google Scholar 

  75. Mathew, R., et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137, 1062–1075.

    Article  CAS  Google Scholar 

  76. Xie, Z., et al. (2007). Autophagosome formation: Core machinery and adaptations. Nature Cell Biology, 9(10), 1102–1109.

    Article  CAS  Google Scholar 

  77. Youle, R. J., et al. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12(1), 9–14.

    Article  CAS  Google Scholar 

  78. Guo, J., et al. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes and Development, 25(5), 460–470.

    Article  CAS  Google Scholar 

  79. Yang, S., et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes and Development, 25(7), 17–29.

    Article  CAS  Google Scholar 

  80. Hu, Y., et al. (2012). Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Research, 72(7), 1773–1783.

    Article  CAS  Google Scholar 

  81. Amaravadi, R., et al. (2011). Principles and current strategies for targeting autophagy for cancer treatment. Clinical Cancer Research, 17(4), 654–666.

    Article  CAS  Google Scholar 

  82. Yang, Z., et al. (2011). The role of autophagy in cancer: Therapeutic implications. Molecular Cancer Therapeutics, 10(9), 1533–1541.

    Article  CAS  Google Scholar 

  83. Matsuda, F., et al. (2009). Autophagy induced by 2-deoxy-D-glucose suppresses intracellular multiplication of Legionella pneumophila in A/J mouse macrophages. Autophagy, 5(4), 484–493.

    Article  CAS  Google Scholar 

  84. Mizushima, N., et al. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069–1075.

    Google Scholar 

  85. Lee, J. H., et al. (2010). Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell, 141(7), 1146–1191.

    Article  CAS  Google Scholar 

  86. Wong, E. S., et al. (2008). Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Human Molecular Genetics, 7(16), 2570–2582.

    Article  CAS  Google Scholar 

  87. Vives-Bauza, C., de Vries, R. L., et al. (2010). PINK1/Parkin direct mitochondria to autophagy. Autophagy, 6(2), 315–316.

    Google Scholar 

  88. Hara, T., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441(7095), 885–889.

    Article  CAS  Google Scholar 

  89. Komatsu, M., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095), 880–884.

    Article  CAS  Google Scholar 

  90. Tsukamoto, S., et al. (2008). Autophagy is essential for preimplantation development of mouse embryos. Science, 321(5885), 117–120.

    Article  CAS  Google Scholar 

  91. Al Rawi, S., et al. (2011). Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science, 334(6059), 1144–1147.

    Article  CAS  Google Scholar 

  92. Qu, X., et al. (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 128(5), 931–946.

    Article  CAS  Google Scholar 

  93. Kuma, A., et al. (2004). The role of autophagy during the early neonatal starvation period. Nature, 432(7020), 1032–1036.

    Article  CAS  Google Scholar 

  94. Paludan, C., et al. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science, 307(5709), 593–596.

    Article  CAS  Google Scholar 

  95. Nedjic, J., et al. (2008). Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature, 455(7211), 396–400.

    Article  CAS  Google Scholar 

  96. Nakagawa, I., et al. (2004). Autophagy defends cells against invading group A Streptococcus. Science, 306(5698), 1037–1040.

    Article  CAS  Google Scholar 

  97. Lee, H. K., et al. (2007). Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science, 315(5817), 1398–1401.

    Article  CAS  Google Scholar 

  98. Singh, S. B., et al. (2006). Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science, 313(5792), 1438–1441.

    Article  CAS  Google Scholar 

  99. Munz, C. (2010). Antigen processing via autophagy—not only for MHC class II presentation anymore? Current Opinion Immunology, 22(1), 89–93.

    Article  CAS  Google Scholar 

  100. Levine, B., et al. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27–42.

    Article  CAS  Google Scholar 

  101. Ogawa, M., et al. (2005). Escape of intracellular Shigella from autophagy. Science, 307(5710), 727–731.

    Article  CAS  Google Scholar 

  102. Wileman, T. (2006). Aggresomes and autophagy generate sites for virus replication. Science, 312(5775), 875–878.

    Article  CAS  Google Scholar 

  103. Virgin, H. W., et al. (2009). Autophagy genes in immunity. Nature Immunology, 10(5), 461–470.

    Article  CAS  Google Scholar 

  104. Taylor, M. P., & Kirkegaard, K. (2007). Modification of cellular autophagy protein LC3 by poliovirus. Journal of Virology, 81(22), 12543–12553.

    Article  CAS  Google Scholar 

  105. Brabec-Zaruba, M., et al. (2007). Induction of autophagy does not affect human rhinovirus type 2 production. Journal of Virology, 81(19), 10815–10817.

    Article  CAS  Google Scholar 

  106. Blanchet, F. P., Moris, A., et al. (2010). Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity, 32(5), 654–669.

    Article  CAS  Google Scholar 

  107. Nicklin, P., et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 136(3), 521–534.

    Article  CAS  Google Scholar 

  108. Singh, R., et al. (2009). Autophagy regulates lipid metabolism. Nature, 458(7242), 1131–1135.

    Article  CAS  Google Scholar 

  109. He, C., et al. (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382), 511–515.

    Article  CAS  Google Scholar 

  110. Rubinsztein, D. C., et al. (2011). Autophagy and aging. Cell, 146(5), 682–695.

    Article  CAS  Google Scholar 

  111. Green, D. R., et al. (2011). Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science, 333(6046), 1109–1112.

    Article  CAS  Google Scholar 

  112. Melendez, A., et al. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science, 301(5638), 1387–1391.

    Google Scholar 

  113. Johnson,T. E. (2008). Caenorhabditis elegans 2007: The premier model for the study of aging. Experimental Gerontology, 43(1), 1–4.

    Google Scholar 

  114. Chen, Y., et al. (2005). Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochemical Biophysical Research Commun, 337(1), 52–60.

    Article  CAS  Google Scholar 

  115. Seleverstov, O., et al. (2006). Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Letter, 6(12), 2826–2832.

    Google Scholar 

  116. Stern, S. T., et al. (2008). Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials? Toxicological Sciences, 106(1), 140–152.

    Article  CAS  Google Scholar 

  117. Zhang, Q., et al. (2009). Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy, 5(8), 1107–1117.

    Article  CAS  Google Scholar 

  118. Yu, L., et al. (2009). Rare earth oxide nanocrystals induce autophagy in HeLa cells. Small (Weinheim an der Bergstrasse, Germany), 5(24), 2784–2787.

    Article  CAS  Google Scholar 

  119. Man, N., et al. (2010). Rare earth oxide nanocrystals as a new class of autophagy inducers. Autophagy, 6(2), 310–311.

    Article  CAS  Google Scholar 

  120. Liu, H. L., et al. (2011). A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death and Disease, 2, e159.

    Google Scholar 

  121. Wei, P., et al. (2010). C60 (Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology, 21(49), 495101–495112.

    Article  CAS  Google Scholar 

  122. Lee, C., et al. (2011). C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide. Nanomedicine, 7(1), 107–114.

    Article  CAS  Google Scholar 

  123. Zhang, Y., et al. (2010). Nano rare-earth oxides induced size-dependent vacuolization: An independent pathway from autophagy. International Journal of Nanomedicine, 5, 601–609.

    Article  CAS  Google Scholar 

  124. Khan, M. I., et al. (2012). Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials, 33(5), 1477–1488.

    Article  CAS  Google Scholar 

  125. Ma, X., et al. (2011). Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano, 5(11), 8629–8639.

    Article  CAS  Google Scholar 

  126. Wu, Y. N., et al. (2011). The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials, 32(20), 4565–4573.

    Article  CAS  Google Scholar 

  127. Li, C., et al. (2009). PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. Journal of Molecular Cell Biology, 1(1), 37–45.

    Article  CAS  Google Scholar 

  128. Man, N., et al. (2010). Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy, 6(4), 449–454.

    Article  CAS  Google Scholar 

  129. Eidi, H., et al. (2012). Drug delivery by polymeric nanoparticles induced autophagy in macrophages. International Journal of Pharmaceutics, 422(1), 495–503.

    Article  CAS  Google Scholar 

  130. Kroemer, G., et al. (2008). Autophagic cell death: The story of a misnomer. Nature Reviews Molecular Cell Biology, 9(12), 1004–1010.

    Article  CAS  Google Scholar 

  131. Chiara Maiuri, M. (2007). Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8(9), 741–752.

    Article  CAS  Google Scholar 

  132. Yang, Lu., et al. (2012). MnO nanocrystals: A platform for integration of MRI and genuine autophagy induction for chemotherapy. Advanced Functional Materials, 10, 1002.

    Google Scholar 

  133. Li, J. J., Hartono, D., et al. (2010). Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials, 31(23), 5996–6003.

    Article  CAS  Google Scholar 

  134. Li, H. Y., Li, Y. H., Jiao, J., & Hu, H. M. (2011). Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumor response. Nature Nanotechnology, 6(10), 645–650.

    Article  CAS  Google Scholar 

  135. Chiu, H. (2011). Synergistic effects of arsenic trioxide and radiation in osteosarcoma cells through the induction of both autophagy and apoptosis. Radiation Research, 175(5), 547–560.

    Article  CAS  Google Scholar 

  136. Johnson-Lyles, D., et al. (2010). Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicology and Applied Pharmacology, 248(3), 249–258.

    Article  CAS  Google Scholar 

  137. Ueng, T., et al. (1997). Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicology Letters, 93(1), 29–37.

    Article  CAS  Google Scholar 

  138. Chen, H., et al. (1998). Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicologic Pathology, 26(1), 143–151.

    Article  CAS  Google Scholar 

  139. Monick, M., et al. (2010). Identification of an autophagy defect in smokers’ alveolar macrophages. Journal of Immunology, 185(9), 5425–5435.

    Article  CAS  Google Scholar 

  140. Chen, M. Y., et al. (2005). Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. Journal of Neurosurgery, 103(2), 311–319.

    Article  Google Scholar 

  141. Zhang, X. L., Niu, H. Y., et al. (2010). Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Analytical Chemistry, 82(6), 2363–2371.

    Article  CAS  Google Scholar 

  142. Chen, Y. J., Tao, J. A., et al. (2010). Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Development and Industrial Pharmacy, 36(10), 1235–1244.

    Article  CAS  Google Scholar 

  143. Alam, M. M., et al. (2010). Synthesis and characterization of TTAB coated Silver (Ag) nanoparticles. Advanced Materials Research, 264, 530–534.

    Google Scholar 

  144. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., & Belcher, A. M. (2000). Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 405(6787), 665–668.

    Article  CAS  Google Scholar 

  145. Brown, S., Sarikaya, M., et al. (2000). A genetic analysis of crystal growth. Journal of Molecular Biology, 299(3), 725–735.

    Article  CAS  Google Scholar 

  146. Giljohann, D. A., Seferos, D. S., et al. (2007). Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Letters, 7(12), 3818–3821.

    Article  CAS  Google Scholar 

  147. Bakota, E. L., Aulisa, L., Tsyboulski, D. A., Weisman, R. B., & Hartgerink, J. D. (2009). Multidomain peptides as single-walled carbon nanotube surfactants in cell culture. Biomacromolecules, 10(8), 2201–2206.

    Article  CAS  Google Scholar 

  148. Kim, Y. H., Jeon, J., et al. (2011). Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. Small (Weinheim an der Bergstrasse, Germany), 7(14), 2052–2060.

    Article  CAS  Google Scholar 

  149. Dutta, D., et al. (2007). Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicological Sciences, 100(1), 303–315.

    Article  CAS  Google Scholar 

  150. Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.

    Article  CAS  Google Scholar 

  151. Barbas, C. F., III, Burton, D. R., Scott, J. K., & Silverman, G. J. (2001). Phage display: A laboratory manual (Cold Spring Harbour Laboratory Press, New York).

    Google Scholar 

  152. Lademann, J., et al. (1999). Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacology and Applied Skin Physiology, 12, 247–256.

    Article  CAS  Google Scholar 

  153. Lowman, H. B., et al. (1991). Selecting high-affinity binding proteins by monovalent phage display. Biochemistry, 30(45), 10832–10838.

    Article  CAS  Google Scholar 

  154. Pasqualini, R., & Ruoslahti, E. (1996). Organ targeting in vivo using phage display peptide libraries. Nature, 380, 364–366.

    Article  CAS  Google Scholar 

  155. Rajotte, D., et al. (1998). Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. The Journal of Clinical Investigation, 102(2), 430–437.

    Article  CAS  Google Scholar 

  156. Bai, F., Liang, J., et al. (2007). Inhibitory effects of a specific phage-displayed peptide on high peritoneal metastasis of gastric cancer. Journal of Molecular Medcine, 85, 169–180.

    Article  CAS  Google Scholar 

  157. Wang, S. X., et al. (2003). Selection of targets locating on the surface of epithelial ovarian cancer cells by using phage peptide library. Zhonghua Fu Chan Ke Za Zhi, 38(7), 412–414.

    Google Scholar 

  158. Hsiung, P. L., et al. (2008). Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Medicine, 14(4), 454–458.

    Article  CAS  Google Scholar 

  159. Du, Y. Z., Cai, L. L., et al. (2012). Tumor cells-specific targeting delivery achieved by A54 peptide functionalized polymeric micelles. Biomaterials, 33(34), 8858–8867.

    Article  CAS  Google Scholar 

  160. Shukla, G. S., et al. (2005). Selection of tumor-targeting agents on freshly excised human breast tumors using a phage display library. Oncology Reports, 13(4), 757–764.

    CAS  Google Scholar 

  161. Wang, Y., et al. (2003). In vivo screening and characterization of peptides specific binding to vasculature of gastric cancer. Chinese Journal of Cell Molmmunology, 19(5), 469–472.

    CAS  Google Scholar 

  162. Wang, X. W., et al. (2003). Biospanning of peptide specific to P glycopmtein. Chinese Journal of Urology, 24(12), 824–826.

    Google Scholar 

  163. Yao, V. J., et al. (2005). Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. The American Journal of Pathology, 166(2), 625–636.

    Article  CAS  Google Scholar 

  164. Wang, B., et al. (2004). Selection of targeted glioblastoma tumor cell binding and internalization peptides through phage display vector. Chinese Journal of Pathophysiology, 20(5), 752–756.

    CAS  Google Scholar 

  165. Flynn, C. E., Mao, C. B., et al. (2003). Synthesis and organization of nanoscale II-VI semiconductor materials using evolved peptide specificity and viral capsid assembly. Journal of Materials Chemistry, 13(10), 2414–2421.

    Article  CAS  Google Scholar 

  166. Lee, S. W., Mao, C. B., et al. (2002). Ordering of quantum dots using genetically engineered viruses. Science, 296(5569), 892–895.

    Article  CAS  Google Scholar 

  167. Mao, C. B., Solis, D. J., et al. (2004). Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science, 303(5655), 213–217.

    Article  CAS  Google Scholar 

  168. Reiss, B. D., Mao, C. B., et al. (2004). Biological routes to metal alloy ferromagnetic nanostructures. Nano Letters, 4(6), 1127–1132.

    Article  CAS  Google Scholar 

  169. Naik, R. R., Brott, L. L., et al. (2003). Bio-inspired approaches and biologically derived materials for coatings. Progress in Organic Coatings, 47(3), 249–255.

    Article  CAS  Google Scholar 

  170. Lee, E., Lim, Y., et al. (2008). Solution structure of peptide AG4 used to form silver nanoparticles. Biochemical adn Biophysical Research Communications, 376(3), 595–598.

    Article  CAS  Google Scholar 

  171. Kulp, J. L., Sarikaya, M., et al. (2004). Molecular characterization of a prokaryotic polypeptide sequence that catalyzes Au crystal formation. Journal of Materials Chemistry, 14(14), 2325–2332.

    Article  CAS  Google Scholar 

  172. Kim, J., et al. (2010). Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater ialia, 6(7), 2681–2689.

    Article  CAS  Google Scholar 

  173. Sano, K. I., Sasaki, H., et al. (2005). Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1). Langmuir, 21(7), 3090–3095.

    Article  CAS  Google Scholar 

  174. Okochi, M., Sugita, T., et al. (2010). Peptide array-based characterization and design of ZnO-high affinity peptides. Biotechnology and Bioengineering, 106(6), 845–851.

    Article  CAS  Google Scholar 

  175. Lewin, M., et al. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 18(4), 410–414.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjiao Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y. (2022). Introduction. In: Tuning Autophagy-Inducing Activity and Toxicity for Lanthanide Nanocrystals. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-16-8166-0_1

Download citation

Publish with us

Policies and ethics