Skip to main content

Analysis on the Second Ignition Phenomenon Induced by Shock Wave Focusing in a 90° Conical Reflector

  • Conference paper
  • First Online:
Proceedings of the International Conference on Aerospace System Science and Engineering 2021 (ICASSE 2021)

Abstract

The shock wave focusing is a promising detonation initiation method that can greatly shorten the deflagration to detonation transition distance. In this work, we conducted experiments under the constant operating pressure in a conical reflector to explore the shock focusing induced ignition in CH4/O2/Ar mixture. The second ignition is formed in the conical reflector under certain conditions. The introduction of the second ignition brings a higher pressure peak after ignition. By adjusting the incident shock intensity, three modes of ignition are found in the conical reflex. The pressure peak of combustion and the time to induce the second ignition are systematically investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee J (2008) The detonation phenomenon. Cambridge University Press

    Google Scholar 

  2. Dorofeev S, Sidorov V, Kuznetsov M, Matsukov I, Alekseev V (2000) Effect of scale on the onset of detonations. Shock Waves 10:137–149

    Article  Google Scholar 

  3. Lee JHS, Jesuthasan A, Ng HD (2013) Near limit behavior of the detonation velocity. Proc Combust Inst 34(2):1957–1963

    Article  Google Scholar 

  4. Ciccarelli G, Dorofeev S (2008) Flame acceleration and transition to detonation in ducts. Prog Energy Combust Sci 34(4):499–550

    Article  Google Scholar 

  5. Zhang B, Liu H (2017) The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane–oxygen mixture. Combust Flame 182:279–287

    Article  Google Scholar 

  6. Zhang B (2016) The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combust Flame 169:333–339

    Article  Google Scholar 

  7. Zhang B, Ng HD, Lee JHS (2012) Measurement and scaling analysis of critical energy for direct initiation of gaseous detonations. Shock Waves 22(3):275–9

    Google Scholar 

  8. Maxwell B, Bhattacharjee R, Lau-Chapdelaine SSM, Falle S, Sharpe G, Radulescu M (2016) Influence of turbulent fluctuations on detonation propagation. J Fluid Mech 818

    Google Scholar 

  9. Kellenberger M, Ciccarelli G (2015) Propagation mechanisms of supersonic combustion waves. Proc Combust Inst 35(2):2109–2116

    Article  Google Scholar 

  10. Wang L, Ma H, Shen Z, Pan J (2019) Effects of bluff bodies on the propagation behaviors of gaseous detonation. Combust Flame 201:118–128

    Article  Google Scholar 

  11. Wang L, Ma H, Shen Z, Xue B, Cheng Y, Fan Z (2017) Experimental investigation of methane-oxygen detonation propagation in tubes. Appl Therm Eng 123:1300–1307

    Article  Google Scholar 

  12. Wang L, Ma H, Yongxing D, Shen Z (2019) On the detonation behavior of methane-oxygen in a round tube filled with orifice plates. Process Saf Environ Prot 121:263–270

    Article  Google Scholar 

  13. Hutchins TE, Metghalchi M (2003) Energy and exergy analyses of the pulse detonation engine. J Eng Gas Turbines Power 125(4):1075–1080

    Article  Google Scholar 

  14. Kailasanath K (2003) Recent developments in the research on pulse detonation engines. AIAA J 41(2):145–159

    Article  Google Scholar 

  15. Bellini R, Lu FK (2010) Exergy analysis of a pulse detonation power device. J Propuls Power 26(4):875–8

    Google Scholar 

  16. Ostrander M, Hyde J, Young M, Kissinger R, Pratt D (1987) Standing oblique detonation wave engine performance. In: Joint propulsion conference

    Google Scholar 

  17. Ng HD (2018) Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model. Phys Fluids 30:106110

    Google Scholar 

  18. Walters IV, Journell CL, Lemcherfi A, Gejji R, Heister SD, Slabaugh CD (2019) Parametric survey of a natural gas-air rotating detonation engine at elevated pressure. In: AIAA scitech 2019 forum

    Google Scholar 

  19. Liu Z, Braun J, Paniagua G (2019) Characterization of a supersonic turbine downstream of a rotating detonation combustor. J Eng Gas Turb Power 141(3):031501

    Google Scholar 

  20. Pandey KM, Debnath P (2016) Review on recent advances in pulse detonation engines. J Combust 016:1–16

    Article  Google Scholar 

  21. Peng HY, Liu WD, Liu SJ, Zhang HL, Zhou WY (2019) Realization of methane-air continuous rotating detonation wave. Acta Astronaut 164:1–8

    Article  Google Scholar 

  22. Cooper MA, Jackson S, Austin J, Wintenberger E, Shepherd J (2002) Direct experimental impulse measurements for detonations and deflagrations. J Propul Power 18:1033–1041

    Article  Google Scholar 

  23. Meshkov EE (1970) Reflection of a plane shock wave from a rigid concave wall. Fluid Dyn 5(4):554–558

    Article  Google Scholar 

  24. Skews BW, Kleine H (2007) Flow features resulting from shock wave impact on a cylindrical cavity. J Fluid Mech 580:481–493

    Article  Google Scholar 

  25. Bond C, Hill DJ, Meiron DI, Dimotakis PE (2009) Shock focusing in a planar convergent geometry: experiment and simulation. J Fluid Mech 641:297–333

    Article  MathSciNet  Google Scholar 

  26. Gelfand BE, Khomik SV, Bartenev AM, Medvedev SP, Gronig H, Olivier H (2000) Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 10(3):197–204

    Article  Google Scholar 

  27. Gelfand BE, Khomik SV, Medvedev SP, Gronig H, Olivier H (2001) Visualization of self-ignition regimes in hydrogen-air mixtures under shock waves focusing. P Soc Photo Opt Ins 4183:688–695

    Google Scholar 

  28. Smirnov NN, Penyazkov OG, Sevrouk KL, Nikitin VF, Stamov LI, Tyurenkova VV (2018) Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber. Acta Astronaut 149:77–92

    Article  Google Scholar 

  29. Smirnov NN, Penyazkov OG, Sevrouk KL, Nikitin VF, Stamov LI, Tyurenkova VV (2017) Detonation onset following shock wave focusing. Acta Astronaut 135:114–130

    Article  Google Scholar 

  30. Gaseq Chemical Equilibrium Program. Version 0.79. New York (Columbia University): Computerized educational systems. http://www.gaseq.co.uk/gseqdnld.htm. Accessed 2005/01

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhang, B. (2023). Analysis on the Second Ignition Phenomenon Induced by Shock Wave Focusing in a 90° Conical Reflector. In: Jing, Z., Strelets, D. (eds) Proceedings of the International Conference on Aerospace System Science and Engineering 2021. ICASSE 2021. Lecture Notes in Electrical Engineering, vol 849. Springer, Singapore. https://doi.org/10.1007/978-981-16-8154-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8154-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8153-0

  • Online ISBN: 978-981-16-8154-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics