Skip to main content

Containers for Self-healing/Self-repairing Polymers

Part of the Composites Science and Technology book series (CST)

Abstract

Self-healing materials received significant attention in recent years among researchers. One of the greatest challenges in modern material sciences is the development and manufacture of engineering materials with self-healing (self-repair) properties. In such materials, stresses of a certain magnitude induced by chemical, physical, or thermal sources cause mechanical deformation of the material, which in turn triggers a response in the material, leading to the potential repair (self-healing) of the physical damage. Nature is an excellent source to show humankind how to achieve these properties for manmade materials. By a short look at nature, it is obvious that a dynamic system is required to achieve a self-healing material. Consequently, the important characteristic aspect of a self-healing material is the availability of a structure, which can dynamically respond to an external stimulus in order to restore the initial properties of the material. Considering the highly complex chain structure of polymers, polymers are ideally suitable to serve as molecules for dynamic and therefore self-healing properties. Among different methods to achieve this ability in engineering material micro/nano-containers containing healing materials have been widely investigated. In this chapter, the focus is on the methods, which are available for the production of these containers.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. White SR et al (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797

    CAS  Google Scholar 

  2. Dry C (1996) Procedures developed for self-repair of polymer matrix composite materials. Compos Struct 35(3):263–269

    Google Scholar 

  3. Trask R, Williams G, Bond I (2007) Bioinspired self-healing of advanced composite structures using hollow glass fibres. J R Soc Interface 4(13):363–371

    CAS  Google Scholar 

  4. Caruso MM et al (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109(11):5755–5798

    CAS  Google Scholar 

  5. Keller MW (2013) Encapsulation-based self-healing polymers and composites. Healable polymer systems. The Royal Society of Chemistry Cambridge, UK, pp 16–61

    Google Scholar 

  6. Trask R, Williams H, Bond I (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspiration Biomim 2(1):P1

    CAS  Google Scholar 

  7. Yow HN, Routh AF (2006) Formation of liquid core–polymer shell microcapsules. Soft Matter 2(11):940–949

    CAS  Google Scholar 

  8. Cui J et al (2010) Monodisperse polymer capsules: tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating. Adv Func Mater 20(10):1625–1631

    CAS  Google Scholar 

  9. Esser-Kahn AP et al (2011) Triggered release from polymer capsules. Macromolecules 44(14):5539–5553

    CAS  Google Scholar 

  10. Zhao Y et al (2012) Encapsulation of self-healing agents in polymer nanocapsules. Small 8(19):2954–2958

    CAS  Google Scholar 

  11. Nesterova T et al (2012) Microcapsule-based self-healing anticorrosive coatings: capsule size, coating formulation, and exposure testing. Prog Org Coat 75(4):309–318

    CAS  Google Scholar 

  12. Qin R et al (2012) Preparation and characterization of a novel poly (urea–formaldehyde) microcapsules with similar reflectance spectrum to leaves in the UV–Vis–NIR region of 300–2500 nm. Mater Chem Phys 136(2–3):737–743

    CAS  Google Scholar 

  13. de la Paz Miguel M et al (2016) Effect of the preparation method on the structure of linseed oil-filled poly (urea-formaldehyde) microcapsules. Prog Org Coat 97:194–202

    Google Scholar 

  14. Mangun C et al (2010) Self-healing of a high temperature cured epoxy using poly (dimethylsiloxane) chemistry. Polymer 51(18):4063–4068

    CAS  Google Scholar 

  15. Suryanarayana C, Rao KC, Kumar D (2008) Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog Org Coat 63(1):72–78

    CAS  Google Scholar 

  16. Samadzadeh M et al (2011) Tung oil: an autonomous repairing agent for self-healing epoxy coatings. Prog Org Coat 70(4):383–387

    CAS  Google Scholar 

  17. Juita J et al (2012) Low temperature oxidation of linseed oil: a review. Fire Sci Rev 1(1):3–3

    Google Scholar 

  18. Boura SH et al (2012) Self-healing ability and adhesion strength of capsule embedded coatings—micro and nano sized capsules containing linseed oil. Prog Org Coat 75(4):292–300

    Google Scholar 

  19. Behzadnasab M et al (2014) Preparation and characterization of linseed oil-filled urea–formaldehyde microcapsules and their effect on mechanical properties of an epoxy-based coating. Colloids Surf A 457:16–26

    CAS  Google Scholar 

  20. Siva T, Sathiyanarayanan S (2015) Self healing coatings containing dual active agent loaded urea formaldehyde (UF) microcapsules. Prog Org Coat 82:57–67

    CAS  Google Scholar 

  21. Hasanzadeh M, Shahidi M, Kazemipour M (2015) Application of EIS and EN techniques to investigate the self-healing ability of coatings based on microcapsules filled with linseed oil and CeO2 nanoparticles. Prog Org Coat 80:106–119

    CAS  Google Scholar 

  22. Szabó T, Telegdi J, Nyikos L (2015) Linseed oil-filled microcapsules containing drier and corrosion inhibitor–their effects on self-healing capability of paints. Prog Org Coat 84:136–142

    Google Scholar 

  23. Lang S, Zhou Q (2017) Synthesis and characterization of poly (urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development. Prog Org Coat 105:99–110

    CAS  Google Scholar 

  24. Çömlekçi GK, Ulutan S (2018) Encapsulation of linseed oil and linseed oil based alkyd resin by urea formaldehyde shell for self-healing systems. Prog Org Coat 121:190–200

    Google Scholar 

  25. Querat E, Tighzert L, Pascault J-P (1996) Microencapsulation of isocyanates. Characterization and storage stability of microcapsules in a polyester α, ω-ol. JCT J Coat Technol 68(854)

    Google Scholar 

  26. Cheong IW, Kim JH (2004) Synthesis of core–shell polyurethane–urea nanoparticles containing 4,4′-methylenedi-p-phenyl diisocyanate and isophorone diisocyanate by self-assembled neutralization emulsification. Chem Commun 21:2484–2485

    Google Scholar 

  27. Yang J et al (2008) Microencapsulation of isocyanates for self-healing polymers. Macromolecules 41(24):9650–9655

    CAS  Google Scholar 

  28. Huang M, Yang J (2011) Facile microencapsulation of HDI for self-healing anticorrosion coatings. J Mater Chem 21(30):11123–11130

    CAS  Google Scholar 

  29. Di Credico B, Levi M, Turri S (2013) An efficient method for the output of new self-repairing materials through a reactive isocyanate encapsulation. Eur Polymer J 49(9):2467–2476

    Google Scholar 

  30. Reinhold SE et al (2012) Self-healing microencapsulation of biomacromolecules without organic solvents. Angew Chem 124(43):10958–10961

    Google Scholar 

  31. Desai K-GH, Schwendeman SP (2013) Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release 165(1):62–74

    CAS  Google Scholar 

  32. Choi H, Kim KY, Park JM (2013) Encapsulation of aliphatic amines into nanoparticles for self-healing corrosion protection of steel sheets. Prog Org Coat 76(10):1316–1324

    CAS  Google Scholar 

  33. Crespy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6(1):1132–1148

    CAS  Google Scholar 

  34. Fickert J et al (2012) Design and characterization of functionalized silica nanocontainers for self-healing materials. J Mater Chem 22(5):2286–2291

    CAS  Google Scholar 

  35. Bathfield M, Graillat C, Hamaide T (2005) Encapsulation of high biocompatible hydrophobe contents in nonionic nanoparticles by miniemulsion polymerization of vinyl acetate or styrene: influence of the hydrophobe component on the polymerization. Macromol Chem Phys 206(22):2284–2291

    CAS  Google Scholar 

  36. Crespy D, Musyanovych A, Landfester K (2006) Synthesis of polymer particles and nanocapsules stabilized with PEO/PPO containing polymerizable surfactants in miniemulsion. Colloid Polym Sci 284(7):780–787

    CAS  Google Scholar 

  37. Darwish M et al (2011) Bi-layered polymer–magnetite core/shell particles: synthesis and characterization. J Mater Sci 46(7):2123–2134

    CAS  Google Scholar 

  38. Erdem B et al (2000) Encapsulation of inorganic particles via miniemulsion polymerization. In: Macromolecular Symposia. Wiley Online Library

    Google Scholar 

  39. Li H et al (2008) Incorporation of polyoxometalates into polystyrene latex by supramolecular encapsulation and miniemulsion polymerization. Macromol Rapid Commun 29(5):431–436

    Google Scholar 

  40. Staff RH et al (2011) Phase behavior of binary mixtures of block copolymers and a non-solvent in miniemulsion droplets as single and double nanoconfinement. Soft Matter 7(21):10219–10226

    CAS  Google Scholar 

  41. Crespy D, Landfester K (2007) Preparation of nylon 6 nanoparticles and nanocapsules by two novel miniemulsion/solvent displacement hybrid techniques. Macromol Chem Phys 208(5):457–466

    CAS  Google Scholar 

  42. Crespy D et al (2007) Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromolecules 40(9):3122–3135

    CAS  Google Scholar 

  43. Wang Y et al (2011) Facile one-pot preparation of novel shell cross-linked nanocapsules: inverse miniemulsion RAFT polymerization as an alternative approach. Soft Matter 7(11):5348–5352

    CAS  Google Scholar 

  44. Wu D et al (2006) Aqueous-core capsules via interfacial free radical alternating copolymerization. Macromolecules 39(17):5848–5853

    CAS  Google Scholar 

  45. Charoenmark L et al (2012) Preparation of superparamagnetic polystyrene-based nanoparticles functionalized by acrylic acid. Macromol Res 20(6):590–596

    CAS  Google Scholar 

  46. Herrmann C et al (2012) Re-dispersible anisotropic and structured nanoparticles: formation and their subsequent shape change. Macromol Chem Phys 213(8):829–838

    CAS  Google Scholar 

  47. Ramos J, Forcada J (2011) Surfactant-free miniemulsion polymerization as a simple synthetic route to a successful encapsulation of magnetite nanoparticles. Langmuir 27(11):7222–7230

    CAS  Google Scholar 

  48. Manzke A et al (2007) Etching masks based on miniemulsions: a novel route towards ordered arrays of surface nanostructures. Adv Mater 19(10):1337–1341

    CAS  Google Scholar 

  49. Fickert J et al (2012) Efficient encapsulation of self-healing agents in polymer nanocontainers functionalized by orthogonal reactions. Macromolecules 45(16):6324–6332

    CAS  Google Scholar 

  50. Gilabert F et al (2017) Integral procedure to assess crack filling and mechanical contribution of polymer-based healing agent in encapsulation-based self-healing concrete. Cement Concr Compos 77:68–80

    CAS  Google Scholar 

  51. Alghamri R et al (2018) Preparation and polymeric encapsulation of powder mineral pellets for self-healing cement based materials. Constr Build Mater 186:247–262

    CAS  Google Scholar 

  52. Bleay S et al (2001) A smart repair system for polymer matrix composites. Compos A Appl Sci Manuf 32(12):1767–1776

    Google Scholar 

  53. van der Zwaag S (2007) Self-healing materials: an alternative approach to 20 centuries of material science. Springer, Delft

    Google Scholar 

  54. Van Tittelboom K et al (2011) Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cement Concr Compos 33(4):497–505

    Google Scholar 

  55. Tsangouri E et al (2013) Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation. Sci World J 2013

    Google Scholar 

  56. An S et al (2015) Highly flexible transparent self-healing composite based on electrospun core–shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation. Nanoscale 7(42):17778–17785

    CAS  Google Scholar 

  57. Kousourakis A, Mouritz A (2010) The effect of self-healing hollow fibres on the mechanical properties of polymer composites. Smart Mater Struct 19(8):085021

    Google Scholar 

  58. Park JH, Braun PV (2010) Coaxial electrospinning of self-healing coatings. Adv Mater 22(4):496–499

    CAS  Google Scholar 

  59. Roche ET et al (2014) Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials 35(25):6850–6858

    CAS  Google Scholar 

  60. Hoemann C et al (2005) Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr Cartil 13(4):318–329

    CAS  Google Scholar 

  61. Mitchell TJ, Keller MW (2013) Coaxial electrospun encapsulation of epoxy for use in self-healing materials. Polym Int 62(6):860–866

    CAS  Google Scholar 

  62. Neisiany RE et al (2016) Encapsulation of epoxy and amine curing agent in PAN nanofibers by coaxial electrospinning for self-healing purposes. RSC Adv 6(74):70056–70063

    CAS  Google Scholar 

  63. Dzenis Y, Reneker D (2001) United States Patent 6265333: delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces. Interfaces

    Google Scholar 

  64. Crespy D, Zhao Y (2013) Preparation of nanocapsules and core–shell nanofibers for extrinsic self-healing materials. Self-healing polymers: from principles to applications, pp 247-271

    Google Scholar 

  65. Sinha-Ray S et al (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22(18):9138–9146

    CAS  Google Scholar 

  66. Lee MW et al (2015) Self-healing nanofiber-reinforced polymer composites. 1. Tensile testing and recovery of mechanical properties. ACS Appl Mater Interfaces 7(35):19546-19554

    Google Scholar 

  67. Lee MW et al (2015) Self-healing nanofiber-reinforced polymer composites. 2. Delamination/debonding and adhesive and cohesive properties. ACS Appl Mater Interfaces 7(35):19555-19561

    Google Scholar 

  68. Lee MW et al (2014) Hybrid self-healing matrix using core–shell nanofibers and capsuleless microdroplets. ACS Appl Mater Interfaces 6(13):10461–10468

    CAS  Google Scholar 

  69. Lee MW et al (2014) Self-healing transparent core–shell nanofiber coatings for anti-corrosive protection. J Mater Chem A 2(19):7045–7053

    CAS  Google Scholar 

  70. Neisiany RE et al (2017) Towards the development of self-healing carbon/epoxy composites with improved potential provided by efficient encapsulation of healing agents in core-shell nanofibers. Polym Testing 62:79–87

    CAS  Google Scholar 

  71. Zheludkevich M (2009) Self-healing anticorrosion coatings. Self Heal Mater

    Google Scholar 

  72. Melo JDD et al (2014) Encapsulation of solvent into halloysite nanotubes to promote self-healing ability in polymers. Adv Compos Mater 23(5–6):507–519

    CAS  Google Scholar 

  73. Frith JE et al (2013) An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration. Biomaterials 34(37):9430–9440

    CAS  Google Scholar 

  74. Kim YM et al (2014) Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. Laryngoscope 124(3):E64–E72

    CAS  Google Scholar 

  75. Lü S et al (2011) Thermoresponsive injectable hydrogel for three-dimensional cell culture: chondroitin sulfate bioconjugated with poly (N-isopropylacrylamide) synthesized by RAFT polymerization. Soft Matter 7(22):10763–10772

    Google Scholar 

  76. Cao Y et al (2007) Poly (N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 120(3):186–194

    CAS  Google Scholar 

  77. Choi B et al (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6(22):20110–20121

    CAS  Google Scholar 

  78. Li Q et al (2004) Photocrosslinkable polysaccharides based on chondroitin sulfate. J Biomed Mater Res Part A An Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 68(1):28–33

    Google Scholar 

  79. Jin R et al (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2544–2551

    CAS  Google Scholar 

  80. Wiltsey C et al (2015) Thermogelling bioadhesive scaffolds for intervertebral disk tissue engineering: preliminary in vitro comparison of aldehyde-based versus alginate microparticle-mediated adhesion. Acta Biomater 16:71–80

    CAS  Google Scholar 

  81. Fan M et al (2015) Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta Biomater 20:60–68

    CAS  Google Scholar 

  82. Lü S et al (2015) Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation. ACS Appl Mater Interfaces 7(23):13029–13037

    Google Scholar 

  83. Chen Y et al (2018) Bioinspired self-healing hydrogel based on benzoxaborole-catechol dynamic covalent chemistry for 3D cell encapsulation. ACS Macro Lett 7(8):904–908

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negin Farshchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Farshchi, N. (2022). Containers for Self-healing/Self-repairing Polymers. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_9

Download citation