Skip to main content

Containers for Drug Delivery

  • 172 Accesses

Part of the Composites Science and Technology book series (CST)

Abstract

Precise delivery of therapeutic cargos to the destined location is a medical demand for desirable physiological responses. In this discussion the synthetic approaches to prepare cargos and their mode of delivery have been addressed. The versatile synthesis and materialistic approaches have revealed by various scientists that besides carrying drugs/biomolecules the protection is also needed. The merits and demerits of those various architectural units also have been discussed in brief to assess their acceptability and mode of usages.

Keywords

  • Therapeutic cargos
  • Physiological responses
  • Drugs
  • Biomolecules
  • Mode of delivery

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_6
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from Ref. [19] © 2017 Elsevier

Fig. 4

Reprinted with permission from Ref. [36] © 2018 Elsevier

Fig. 5

Reprinted with the permission from Ref. [50] © 2016 American Chemical Society

Fig. 6

Reprinted with the permission from Ref. [58] © 2004 Elsevier

Fig. 7

Reprinted with the permission from Ref. [69] © 2014 American Chemical Society

Fig. 8

Reprinted with the permission from Ref. [73] © 2020 American Chemical Society

Fig. 9

Reprinted with the permission from Ref. [77] © 2017 America Chemical Society

Fig. 10

Reproduced with the permission from Ref. [101] © 2018 Elsevier

Fig. 11

References

  1. Tiwari G et al (2012) Drug delivery systems: an updated review. Int J Pharm Invest 2(1):2

    Google Scholar 

  2. Pal D, Nayak AK (2015) Alginates, blends and microspheres: controlled drug delivery. In: Encyclopedia of biomedical polymers and polymeric biomaterials, 11 Volume Set. CRC Press, pp 89–98

    Google Scholar 

  3. Ganguly S, Das NC (2018) Synthesis of Mussel inspired polydopamine coated halloysite nanotubes based Semi‐IPN: an approach to fine tuning in drug release and mechanical toughening. In: Macromolecular symposia. Wiley Online Library

    Google Scholar 

  4. Jain D, Pathak D, Pathak K (2009) Pharmaceutical product development technologies based on the biopharmaceutical classification system. Die Pharmazie-An Int J Pharmaceut Sci 64(8):483–490

    CAS  Google Scholar 

  5. Hao J, Heng PW (2003) Buccal delivery systems. Drug Dev Ind Pharm 29(8):821–832

    CAS  Google Scholar 

  6. Gherman S et al (2016) Enalapril maleate loaded pullulan film for mucoadhesive buccal drug delivery applications. Cellul Chem Technol 50:593–600

    CAS  Google Scholar 

  7. Lansdowne LE, Drug delivery methods

    Google Scholar 

  8. Sahoo CK et al (2013) Intra vaginal drug delivery system: an overview. Am J Adv Drug Deliv 1:43–55

    Google Scholar 

  9. Narang N, Sharma J (2011) Sublingual mucosa as a route for systemic drug delivery. Int J Pharm Pharm Sci 3(Suppl 2):18–22

    CAS  Google Scholar 

  10. Inamuddin A, Mohammad A (2018) Applications of nanocomposite materials in drug delivery. Woodhead Publishing, pp 509–573

    Google Scholar 

  11. Labiris N, Dolovich M (2003) Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. British J Clin Pharmacol 56(6):588–599

    Google Scholar 

  12. Alkilani AZ, McCrudden MT, Donnelly RF (2015) Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7(4):438–470

    CAS  Google Scholar 

  13. Iqbal HM et al (2015) Development of bio-composites with novel characteristics: evaluation of phenol-induced antibacterial, biocompatible and biodegradable behaviours. Carbohyd Polym 131:197–207

    CAS  Google Scholar 

  14. Bhattarai N et al (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103(3):609–624

    CAS  Google Scholar 

  15. Singh N et al (2016) Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale 8(15):8288–8299

    CAS  Google Scholar 

  16. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3(2):999–1014

    Google Scholar 

  17. Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1(2):105–116

    Google Scholar 

  18. Li Q et al (2012) Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery. J Mater Chem 22(37):19964–19973

    CAS  Google Scholar 

  19. Li Y et al (2017) Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Mater Sci Eng C 73:189–197

    CAS  Google Scholar 

  20. Zhang H, Liu P (2019) Bio-inspired keratin-based core-crosslinked micelles for pH and reduction dual-responsive triggered DOX delivery. Int J Biol Macromol 123:1150–1156

    CAS  Google Scholar 

  21. Srinivasan B et al (2010) Porous keratin scaffold–promising biomaterial for tissue engineering and drug delivery. J Biomed Mater Res Part B Appl Biomater Offic J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 92(1):5–12

    Google Scholar 

  22. Lee H et al (2015) Human hair keratin-based biofilm for potent application to periodontal tissue regeneration. Macromol Res 23(3):300–308

    CAS  Google Scholar 

  23. Jafari SM et al (2008) Nano-particle encapsulation of fish oil by spray drying. Food Res Int 41(2):172–183

    CAS  Google Scholar 

  24. Malafaya P et al (2001) Porous starch-based drug delivery systems processed by a microwave route. J Biomater Sci Polym Ed 12(11):1227–1241

    CAS  Google Scholar 

  25. Ganguly S et al (2017) Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. Int J Biol Macromol 95:185–198

    CAS  Google Scholar 

  26. Massoumi B, Mozaffari Z, Jaymand M (2018) A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system. Int J Biol Macromol 117:418–426

    CAS  Google Scholar 

  27. Ganguly S, Margel S (2020) Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnol Adv 107611

    Google Scholar 

  28. Sadeghi M (2011) Synthesis of starch-g-poly (acrylic acid-co-2-hydroxy ethyl methacrylate) as a potential pH-sensitive hydrogel-based drug delivery system. Turk J Chem 35(5):723–733

    CAS  Google Scholar 

  29. Ali AE-H, AlArifi A (2009) Characterization and in vitro evaluation of starch based hydrogels as carriers for colon specific drug delivery systems. Carbohyd Polym 78(4):725–730

    Google Scholar 

  30. Saboktakin MR et al (2011) Synthesis and in vitro evaluation of carboxymethyl starch–chitosan nanoparticles as drug delivery system to the colon. Int J Biol Macromol 48(3):381–385

    CAS  Google Scholar 

  31. Simi C, Abraham TE (2007) Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess Biosyst Eng 30(3):173–180

    CAS  Google Scholar 

  32. Balmayor ER et al (2009) Preparation and characterization of starch-poly-ε-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Acta Biomater 5(4):1035–1045

    CAS  Google Scholar 

  33. Subramanian SB, Francis AP, Devasena T (2014) Chitosan–starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohyd Polym 114:170–178

    CAS  Google Scholar 

  34. Schmitt H et al (2015) Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polym Eng Sci 55(3):573–580

    CAS  Google Scholar 

  35. Singh B et al (2007) Synthesis, characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohyd Polym 67(2):190–200

    CAS  Google Scholar 

  36. Ganguly S et al (2018) Design of psyllium-g-poly (acrylic acid-co-sodium acrylate)/cloisite 10A semi-IPN nanocomposite hydrogel and its mechanical, rheological and controlled drug release behaviour. Int J Biol Macromol 111:983–998

    CAS  Google Scholar 

  37. Singh B, Kumar S (2008) Synthesis and characterization of psyllium-NVP based drug delivery system through radiation crosslinking polymerization. Nucl Instrum Methods Phys Res Sect B 266(15):3417–3430

    CAS  Google Scholar 

  38. Singh B, Sharma N, Chauhan N (2007) Synthesis, characterization and swelling studies of pH responsive psyllium and methacrylamide based hydrogels for the use in colon specific drug delivery. Carbohyd Polym 69(4):631–643

    Google Scholar 

  39. Singh B et al (2019) Polysaccharides Sterculia gum/psyllium based hydrogel dressings for drug delivery applications. Polym Sci Ser A 61(6):865–874

    Google Scholar 

  40. Poddar S et al (2019) Fabrication and cytocompatibility evaluation of psyllium husk (Isabgol)/gelatin composite scaffolds. Appl Biochem Biotechnol 188(3):750–768

    CAS  Google Scholar 

  41. Kaur K, Jindal R, Bandhu M (2020) Monodispersed silica nanoparticles incorporated nanocomposites of gelatin and psyllium for sequestration of noxious pollutants. J Polym Environ 28(1):179–199

    CAS  Google Scholar 

  42. Ganguly S et al (2018) Polysaccharide and poly (methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. Mater Sci Eng C 92:34–51

    CAS  Google Scholar 

  43. Ciofani G et al (2007) A drug delivery system based on alginate microspheres: mass-transport test and in vitro validation. Biomed Microdevice 9(3):395–403

    CAS  Google Scholar 

  44. Kumar Giri T et al (2012) Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr Drug Deliv 9(6):539–555

    Google Scholar 

  45. Kolambkar YM et al (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74

    CAS  Google Scholar 

  46. Desai J et al (2009) Alginate-based microparticulate oral drug delivery system for rifampicin. Res J Pharm Technol 2(2):301–303

    CAS  Google Scholar 

  47. Lee S, Kim Y-C, Park J-H (2016) Zein-alginate based oral drug delivery systems: protection and release of therapeutic proteins. Int J Pharm 515(1–2):300–306

    CAS  Google Scholar 

  48. Kulkarni RV, Setty CM, Sa B (2010) Polyacrylamide-g-alginate-based electrically responsive hydrogel for drug delivery application: synthesis, characterization, and formulation development. J Appl Polym Sci 115(2):1180–1188

    CAS  Google Scholar 

  49. Li P et al (2017) Encapsulation of autoinducer sensing reporter bacteria in reinforced alginate-based microbeads. ACS Appl Mater Interfaces 9(27):22321–22331

    CAS  Google Scholar 

  50. Majumdar S et al (2016) Carbon-dot-coated alginate beads as a smart stimuli-responsive drug delivery system. ACS Appl Mater Interfaces 8(50):34179–34184

    CAS  Google Scholar 

  51. Hezaveh H, Muhamad II (2013) Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. J Taiwan Inst Chem Eng 44(2):182–191

    CAS  Google Scholar 

  52. Bardajee GR, Hooshyar Z, Rastgo F (2013) Kappa carrageenan-g-poly (acrylic acid)/SPION nanocomposite as a novel stimuli-sensitive drug delivery system. Colloid Polym Sci 291(12):2791–2803

    CAS  Google Scholar 

  53. Pourjavadi A, Barzegar S, Zeidabadi F (2007) Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems. React Funct Polym 67(7):644–654

    CAS  Google Scholar 

  54. Selvakumaran S, Muhamad II, Abd Razak SI (2016) Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of pore forming agents. Carbohy Polym 135:207–214

    Google Scholar 

  55. Wang X et al (2018) Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins. J Control Release 286:358–368

    CAS  Google Scholar 

  56. Anada T et al (2009) Synthesis of calcium phosphate-binding liposome for drug delivery. Bioorg Med Chem Lett 19(15):4148–4150

    CAS  Google Scholar 

  57. Sihorkar V, Vyas S (2001) Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization. J Pharm Pharm Sci 4(2):138–158

    CAS  Google Scholar 

  58. Huang S-L, MacDonald RC (2004) Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochimica et Biophysica Acta (BBA)-Biomembranes 1665(1–2):134–141

    Google Scholar 

  59. Mohamed M et al (2020) Liposomes and PEGylated liposomes as drug delivery system. J Adv Biomed Pharmaceut Sci 3(2):80–88

    Google Scholar 

  60. Soni V, Kohli DV, Jain SK (2005) Transferrin coupled liposomes as drug delivery carriers for brain targeting of 5-florouracil. J Drug Target 13(4):245–250

    CAS  Google Scholar 

  61. Tran MA, Watts RJ, Robertson GP (2009) Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell Melanoma Res 22(4):388–399

    CAS  Google Scholar 

  62. Lee RJ, Low PS (1997) Folate-targeted liposomes for drug delivery. J Liposome Res 7(4):455–466

    CAS  Google Scholar 

  63. Oh JK et al (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477

    CAS  Google Scholar 

  64. Sultana F et al (2013) An overview of nanogel drug delivery system. J Appl Pharm Sci 3(8):95–105

    Google Scholar 

  65. Shidhaye S et al (2008) Nanogel engineered polymeric micelles for drug delivery. Curr Drug Ther 3(3):209–217

    CAS  Google Scholar 

  66. Ding J et al (2013) Self-reinforced endocytoses of smart polypeptide nanogels for “on-demand” drug delivery. J Control Release 172(2):444–455

    CAS  Google Scholar 

  67. Moya-Ortega MD et al (2012) Cross-linked hydroxypropyl-β-cyclodextrin and γ-cyclodextrin nanogels for drug delivery: physicochemical and loading/release properties. Carbohyd Polym 87(3):2344–2351

    CAS  Google Scholar 

  68. Van Thienen T, Demeester J, De Smedt S (2008) Screening poly (ethyleneglycol) micro-and nanogels for drug delivery purposes. Int J Pharm 351(1–2):174–185

    Google Scholar 

  69. Gonçalves M et al (2014) Dendrimer-assisted formation of fluorescent nanogels for drug delivery and intracellular imaging. Biomacromol 15(2):492–499

    Google Scholar 

  70. Jayakumar R et al (2012) Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells. Carbohyd Polym 87(3):2352–2356

    CAS  Google Scholar 

  71. Choi H et al (2020) Degradable nanomotors using platinum deposited complex of calcium carbonate and hyaluronate nanogels for targeted drug delivery. Part Part Syst Charact 37(1):1900418

    CAS  Google Scholar 

  72. Wei P et al (2020) Straightforward access to glycosylated, acid sensitive nanogels by host-guest interactions with sugar-modified pillar [5] arenes. ACS Macro Lett 9(4):540–545

    Google Scholar 

  73. Morimoto N et al (2013) Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromol 14(1):56–63

    CAS  Google Scholar 

  74. Phan QT et al (2020) Synthesis of zwitterionic redox-responsive nanogels by one-pot amine-thiol-ene reaction for anticancer drug release application. React Funct Polym 147:104463

    Google Scholar 

  75. Siirilä J et al (2020) Glucose and maltose surface-functionalized thermoresponsive poly (N-vinylcaprolactam) nanogels. Biomacromol 21(2):955–965

    Google Scholar 

  76. Veronese F et al (1998) Polyorganophosphazene microspheres for drug release: polymer synthesis, microsphere preparation, in vitro and in vivo naproxen release. J Control Release 52(3):227–237

    CAS  Google Scholar 

  77. Martinez AP et al (2017) Biodegradable “smart” polyphosphazenes with intrinsic multifunctionality as intracellular protein delivery vehicles. Biomacromolecules 18(6):2000–2011

    CAS  Google Scholar 

  78. Hou S et al (2020) Polyphosphazene-based drug self-framed delivery system as a universal intelligent platform for combination therapy against multidrug-resistant tumors. ACS Appl Bio Mater 3(4):2284–2294

    CAS  Google Scholar 

  79. Zhou N et al (2020) Acid responsive and biologically degradable polyphosphazene nanodrugs for efficient drug delivery. ACS Biomater Sci Eng

    Google Scholar 

  80. Xu J et al (2014) High loading of hydrophilic/hydrophobic doxorubicin into polyphosphazene polymersome for breast cancer therapy. Nanomed Nanotechnol Biol Med 10(2):349–358

    Google Scholar 

  81. Park M-R et al (2010) Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel. J Control Release 147(3):359–367

    CAS  Google Scholar 

  82. Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. BBA-Biomembr 1104(1):226–232

    CAS  Google Scholar 

  83. Jain S et al (2003) Transfersomes—a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev Ind Pharm 29(9):1013–1026

    CAS  Google Scholar 

  84. Jain S, Tiwary A, Jain N (2006) Sustained and targeted delivery of an anti-HIV agent using elastic liposomal formulation: mechanism of action. Curr Drug Deliv 3(2):157–166

    CAS  Google Scholar 

  85. Maghraby GME, Williams AC, Barry BW (1999) Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol 51(10):1123–1134

    Google Scholar 

  86. Trotta M et al (2002) Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int J Pharm 241(2):319–327

    CAS  Google Scholar 

  87. Mishra D et al (2006) Elastic liposomes mediated transcutaneous immunization against Hepatitis B. Vaccine 24(22):4847–4855

    CAS  Google Scholar 

  88. Ganguly S et al (2020) Acoustic cavitation assisted destratified clay tactoid reinforced in situ elastomer-mimetic semi-IPN hydrogel for catalytic and bactericidal application. Ultrason Sonochem 60:104797

    Google Scholar 

  89. Ganguly S, Das P, Das NC (2020) Characterization tools and techniques of hydrogels. In: Hydrogels based on natural polymers. Elsevier, pp 481–517

    Google Scholar 

  90. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118

    Google Scholar 

  91. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649

    CAS  Google Scholar 

  92. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    CAS  Google Scholar 

  93. Alvarez-Lorenzo C et al (2005) Temperature-sensitive chitosan-poly (N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release 102(3):629–641

    CAS  Google Scholar 

  94. Amin MCIM et al (2012) Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohyd Polym 88(2):465–473

    Google Scholar 

  95. Shantha K, Harding D (2000) Preparation and in-vitro evaluation of poly [N-vinyl-2-pyrrolidone-polyethylene glycol diacrylate]-chitosan interpolymeric pH-responsive hydrogels for oral drug delivery. Int J Pharm 207(1–2):65–70

    CAS  Google Scholar 

  96. Kulkarni RV et al (2012) pH-responsive interpenetrating network hydrogel beads of poly (acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: synthesis, in vitro and in vivo evaluation. J Colloid Interface Sci 367(1):509–517

    CAS  Google Scholar 

  97. Ganguly S, Das NC (2015) Synthesis of a novel pH responsive phyllosilicate loaded polymeric hydrogel based on poly (acrylic acid-co-N-vinylpyrrolidone) and polyethylene glycol for drug delivery: modelling and kinetics study for the sustained release of an antibiotic drug. RSC Adv 5(24):18312–18327

    CAS  Google Scholar 

  98. Ganguly S et al (2016) Synthesis of polydopamine-coated halloysite nanotube-based hydrogel for controlled release of a calcium channel blocker. RSC Adv 6(107):105350–105362

    CAS  Google Scholar 

  99. Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92(1–2):1–17

    CAS  Google Scholar 

  100. Lira LM, de Torresi SIC (2005) Conducting polymer–hydrogel composites for electrochemical release devices: synthesis and characterization of semi-interpenetrating polyaniline–polyacrylamide networks. Electrochem Commun 7(7):717–723

    CAS  Google Scholar 

  101. Ganguly S et al (2018) Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. Ultrason Sonochem 42:212–227

    CAS  Google Scholar 

  102. Servant A et al (2013) Design, engineering and structural integrity of electro-responsive carbon nanotube-based hydrogels for pulsatile drug release. J Mater Chem B 1(36):4593–4600

    CAS  Google Scholar 

  103. Ganguly S et al (2018) Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J Phys Chem B 122(29):7201–7218

    CAS  Google Scholar 

  104. Indermun S et al (2014) An interfacially plasticized electro-responsive hydrogel for transdermal electro-activated and modulated (TEAM) drug delivery. Int J Pharm 462(1–2):52–65

    CAS  Google Scholar 

  105. Pourjavadi A, Doroudian M (2015) Synthesis and characterization of semi-conductive nanocomposite based on hydrolyzed collagen and in vitro electrically controlled drug release study. Polymer 76:287–294

    CAS  Google Scholar 

  106. Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130(3):246–251

    CAS  Google Scholar 

  107. Bourlinos AB et al (2008) Photoluminescent carbogenic dots. Chem Mater 20(14):4539–4541

    CAS  Google Scholar 

  108. Das P et al (2019) Graphene based emergent nanolights: a short review on the synthesis, properties and application. Res Chem Intermed 45(7):3823–3853

    CAS  Google Scholar 

  109. Bourlinos AB et al (2008) Surface functionalized carbogenic quantum dots. Small 4(4):455–458

    Google Scholar 

  110. Ganguly S et al (2019) Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Funct Compos Struct 1(2):022001

    Google Scholar 

  111. Ganguly S et al (2020) Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels. ACS Appl Mater Interfaces 12(46):51940–51951

    CAS  Google Scholar 

  112. Saravanan A et al (2020) Applications of N-doped carbon dots as antimicrobial agents, antibiotic carriers, and selective fluorescent probes for nitro explosives. ACS Appl Bio Mater 3(11):8023–8031

    CAS  Google Scholar 

  113. Ganguly S et al (2018) Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. Nano-Struct Nano-Objects 16:86–95

    CAS  Google Scholar 

  114. Ganguly S et al (2020) Poly (N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly (ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym Bull 77(6):2923–2943

    CAS  Google Scholar 

  115. Mondal S et al (2018) Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Compos A Appl Sci Manuf 107:447–460

    CAS  Google Scholar 

  116. Xu X et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    CAS  Google Scholar 

  117. Zuo P et al (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542

    CAS  Google Scholar 

  118. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    CAS  Google Scholar 

  119. Das P et al (2020) Carbon dots for heavy-metal sensing, pH-sensitive cargo delivery, and antibacterial applications. ACS Appl Nano Mater 3(12):11777–11790

    Google Scholar 

  120. Cao L et al (2011) Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J Am Chem Soc 133(13):4754–4757

    CAS  Google Scholar 

  121. Wang F et al (2011) White light-emitting devices based on carbon dots’ electroluminescence. Chem Commun 47(12):3502–3504

    CAS  Google Scholar 

  122. Das P et al (2017) A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor ‘turn-off’probe for selective sensing of copper ions. Mater Sci Eng C 75:1456–1464

    CAS  Google Scholar 

  123. Das P et al (2018) Waste chimney oil to nanolights: a low cost chemosensor for tracer metal detection in practical field and its polymer composite for multidimensional activity. J Photochem Photobiol B 180:56–67

    CAS  Google Scholar 

  124. Das P et al (2019) Surface quaternized nanosensor as a one-arrow-two-hawks approach for fluorescence turn “on–off–on” bifunctional sensing and antibacterial activity. New J Chem 43(16):6205–6219

    CAS  Google Scholar 

  125. Das P et al (2019) Converting waste Allium sativum peel to nitrogen and sulphur co-doped photoluminescence carbon dots for solar conversion, cell labeling, and photobleaching diligences: a path from discarded waste to value-added products. J Photochem Photobiol B Biol 197:111545

    Google Scholar 

  126. Das P et al (2017) Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology 28(19):195501

    Google Scholar 

  127. Das P et al (2018) Dual doped biocompatible multicolor luminescent carbon dots for bio labeling, UV-active marker and fluorescent polymer composite. Luminescence 33(6):1136–1145

    CAS  Google Scholar 

  128. Guo S et al (2009) Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30(10):1881–1889

    CAS  Google Scholar 

  129. Conde J et al (2013) In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials 34(31):7744–7753

    CAS  Google Scholar 

  130. Chen M-L et al (2013) Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjug Chem 24(3):387–397

    CAS  Google Scholar 

  131. Ganguly S et al (2019) An insight into the physico-mechanical signatures of silylated graphene oxide in poly (ethylene methyl acrylate) copolymeric thermoplastic matrix. Macromol Res 27(3):268–281

    CAS  Google Scholar 

  132. Yang X et al (2010) Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano 4(11):6805–6817

    CAS  Google Scholar 

  133. Das P et al (2019) Heteroatom doped blue luminescent carbon dots as a nano-probe for targeted cell labeling and anticancer drug delivery vehicle. Mater Chem Phys 237:121860

    Google Scholar 

  134. Karthik S et al (2013) Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery. Chem Commun 49(89):10471–10473

    CAS  Google Scholar 

  135. Wang Q et al (2013) Hollow luminescent carbon dots for drug delivery. Carbon 59:192–199

    CAS  Google Scholar 

  136. Feng T et al (2016) Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl Mater Interfaces 8(29):18732–18740

    CAS  Google Scholar 

  137. Das P et al (2019) Biocompatible carbon dots derived from κ-carrageenan and phenyl boronic acid for dual modality sensing platform of sugar and its anti-diabetic drug release behavior. Int J Biol Macromol 132:316–329

    CAS  Google Scholar 

  138. Ganguly S et al (2019) Microwave assisted green synthesis of Zwitterionic photolumenescent N-doped carbon dots: an efficient ‘on-off’chemosensor for tracer Cr (+ 6) considering the inner filter effect and nano drug-delivery vector. Colloids Surf A Physicochem Eng Aspects 579:123604

    Google Scholar 

  139. Lin C et al (2020) Carbon dots embedded metal organic framework@ chitosan core-shell nanoparticles for vitro dual mode imaging and pH-responsive drug delivery. Micropor Mesopor Mater 293:109775

    Google Scholar 

  140. Duan Q et al (2020) Construction and application of targeted drug delivery system based on hyaluronic acid and heparin functionalised carbon dots. Colloids Surf B Biointerfaces 188:110768

    Google Scholar 

  141. Budzynska R et al (2007) Antitumor activity of mannan–methotrexate conjugate in vitro and in vivo. Oncol Res Featur Preclin Clin Cancer Therapeut 16(9):415–421

    CAS  Google Scholar 

  142. Garg M, Dutta T, Jain NK (2007) Reduced hepatic toxicity, enhanced cellular uptake and altered pharmacokinetics of stavudine loaded galactosylated liposomes. Eur J Pharm Biopharm 67(1):76–85

    CAS  Google Scholar 

  143. Dutta T, Jain NK (2007) Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochimica et Biophysica Acta (BBA)-General Subjects 1770(4):681–686

    Google Scholar 

  144. Agarwal A et al (2008) Ligand based dendritic systems for tumor targeting. Int J Pharm 350(1–2):3–13

    CAS  Google Scholar 

  145. Kolomiets E et al (2009) Glycopeptide dendrimers with high affinity for the fucose‐binding lectin LecB from Pseudomonas aeruginosa. ChemMedChem Chem Enab Drug Discov 4(4):562–569

    Google Scholar 

  146. Frisch B, Hassane FS, Schuber F (2010) Conjugation of ligands to the surface of preformed liposomes by click chemistry. In: Liposomes. Springer, pp 267–277

    Google Scholar 

  147. Garg M, Jain NK (2006) Reduced hematopoietic toxicity, enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes. J Drug Target 14(1):1–11

    CAS  Google Scholar 

  148. Suriano F et al (2010) Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery. Biomaterials 31(9):2637–2645

    CAS  Google Scholar 

  149. Oda Y et al (2008) Design, synthesis and evaluation of d-galactose-β-cyclodextrin conjugates as drug-carrying molecules. Bioorg Med Chem 16(19):8830–8840

    CAS  Google Scholar 

  150. Jain NK, Jain SK (2010) Development and in vitro characterization of galactosylated low molecular weight chitosan nanoparticles bearing doxorubicin. AAPS Pharm Sci Tech 11(2):686–697

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ganguly, S., Das, P., Margel, S. (2022). Containers for Drug Delivery. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_6

Download citation