Skip to main content

Fibers as Containers for Encapsulation

  • 165 Accesses

Part of the Composites Science and Technology book series (CST)


Encapsulation technique has been widely used to produce small particles i.e. capsules of functional materials which could be released at specific rate under certain environmental condition. Depending on the size of container, capsules can be categorized by micro capsules with particle size few micrometer to 2000 µm and nanocapsules with particle size up to 100 nm. Encapsulation of functional substances can be prepared by using few common techniques viz. spray drying, coacervation, emulsion polymerization etc. Various shell materials mainly hydrophilic or hydrophobic polymers or combination of hydrophilic/hydrophobic polymers are used to protect functional core materials. Fiber can be used as a container for the encapsulation product because of its high aspect ratio. Encapsulated fibers can be prepared by using various techniques viz. solution spinning, melt spinning, coaxial spinning, electro spinning etc. This chapter provide an overview of micro/nano encapsulated fibers. Various materials (both core and shell) used to prepare encapsulated particles are included. Further, the review described various micro and nano encapsulated fibers. Application of micro and nano encapsulated fibers in medicine, food, agrochemicals and textiles are discussed. Finally, the chapter has been concluded with several challenges of micro and nano encapsulated fibers.


  • Microencapsulation
  • Nanoencapsulation
  • Functional ingredients
  • Stability
  • Core substance
  • Smart material
  • Drug delivery

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_3
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

(Reproduced with permission from Lopez-Rubio et al. Biomacromolecules, 10 (10), 2823–2829, 2009 © 2009 American Chemical Society [38].)

Fig. 3

(Reproduced with permission from McCann et al. Nano Lett., 6 (12), 2868–2872, 2006 © 2006 American Chemical Society [43].)

Fig. 4

(Reproduced with permission from Lancuski et al. Carbohydr. Polym., 158, 68–76, 2017 © 2016 Elsevier Ltd. [1].)

Fig. 5

(Reproduced with permission from Wang and Windbergs, International Journal of Pharmaceutics, vol. 556, pp. 363–371, 2019 © 2018 Elsevier B. V. [54].)

Fig. 6

(Reproduced with permission from Y. Lu et al., Chem. Eng. J., 355, 532–539, 2019 © 2018 Elsevier B. V. [62].)

Fig. 7

(Reproduced with permission from Keskin et al. Colloid Surf. B-Biointerfaces, 161, 169–176, 2018 © 2017 Elsevier B. V. [70].)


  1. Lancuski A, Abu Ammar A, Avrahami R, Vilensky R, Vasilyev G, Zussman E (2017) Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydr Polym 158:68–76.

  2. Gomes MHG, Kurozawa LE (2020) Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. J Food Eng 267, Art no 109761.

  3. Fernandez A, Torres-Giner S, Lagaron JM (2009) Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids 23(5):1427–1432.

  4. Khan WA, Butt MS, Pasha I, Jamil A (2020) Microencapsulation of vitamin D in protein matrices: in vitro release and storage stability. J Food Meas Charact 14:1172–1182.

  5. Lavanya MN, Kathiravan T, Moses JA, Anandharamakrishnan C (2020) Influence of spray-drying conditions on microencapsulation of fish oil and chia oil. Drying Technol 38(3):279–292.

    CAS  CrossRef  Google Scholar 

  6. Lozinska N, Glowacz-Rozynska A, Artichowicz W, Lu YQ, Jungnickel C (2020) Microencapsulation of fish oil—determination of optimal wall material and encapsulation methodology. J Food Eng 268, Art no 109730.

  7. Kurd F, Fathi M, Shekarchizadeh H (2019) Nanoencapsulation of hesperetin using basil seed mucilage nanofibers: characterization and release modeling. Food Biosc 32, Art no 100475.

  8. Walia N, Dasgupta N, Ranjan S, Ramalingam C, Gandhi M (2019) Methods for nanoemulsion and nanoencapsulation of food bioactives. Environ Chem Lett 17(4):1471–1483.

    CAS  CrossRef  Google Scholar 

  9. Zompero RHD, Lopez-Rubio A, de Pinho SC, Lagaron JM, de la Torre LG (2015) Hybrid encapsulation structures based on beta-carotene-loaded nanoliposomes within electrospun fibers. Colloid Surf B-Biointerfaces 134:475–482.

    CAS  CrossRef  Google Scholar 

  10. Cheng J, Park D, Jun Y, Lee J, Hyun J, Lee SH (2016) Biomimetic spinning of silk fibers and in situ cell encapsulation. Lab Chip 16(14):2654–2661.

    CAS  CrossRef  Google Scholar 

  11. Li XQ, Su Y, Liu SP, Tan LJ, Mo XM, Ramakrishna S (2010) Encapsulation of proteins in poly(L-lactide-co-caprolactone) fibers by emulsion electrospinning. Colloid Surf B-Biointerfaces 75(2):418–424.

    CAS  CrossRef  Google Scholar 

  12. Triches M, Brusch A, Hald J (2015) Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique. Appl Phys B-Lasers Opt 121(3):251–258.

  13. Bauer AJP, Zeng TY, Liu JZ, Uthaisar C, Li BB (2014) The enhanced encapsulation capacity of polyhedral oligomeric silsesquioxane-based copolymers for the fabrication of electrospun core/shell fibers. Macromol Rapid Commun 35(7):715–720.

  14. Ghitescu RE, Popa AM, Popa VI, Rossi RM, Fortunato G (2015) Encapsulation of polyphenols into pHEMA e-spun fibers and determination of their antioxidant activities. Int J Pharm 494(1):278–287.

  15. Korehei R, Kadla JF (2014) Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydr Polym 100:150–157.

  16. Aceituno-Medina M, Mendoza S, Rodriguez BA, Lagaron JM, Lopez-Rubio A (2015) Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. J Funct Food 12:332–341.

  17. Chung WJ, Merzlyak A, Lee SW (2010) Fabrication of engineered M13 bacteriophages into liquid crystalline films and fibers for directional growth and encapsulation of fibroblasts. Soft Matter 6(18):4454–4459.

    CAS  CrossRef  Google Scholar 

  18. Zussman E (2011) Encapsulation of cells within electrospun fibers. Polym Adv Technol Rev 22(3):366–371.

  19. Singh MN, Hemant KSY, Ram M, Shivakumar HG (2010) Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci 5(2):65–77

    CAS  Google Scholar 

  20. Ordanini S, Cellesi F (2018) Complex polymeric architectures self-assembling in unimolecular micelles: preparation, characterization and drug nanoencapsulation. Pharm Rev 10(4):19, Art no 209.

  21. Kumari A, Singla R, Guliani A, Yadav SK (2014) Nanoencapsulation for drug delivery. Excli J Rev 13:265–286 [Online].

  22. Zhu F (2017) Encapsulation and delivery of food ingredients using starch based systems. Food Chem Rev 229:542–552.

  23. Aditya NP, Espinosa YG, Norton IT (2017) Encapsulation systems for the delivery of hydrophilic nutraceuticals: food application. Biotechnol Adv Rev 35(4):450–457.

  24. Ruiz JCR, Vazquez EDO, Campos MRS (2017) Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods. Crit Rev Food Sci Nutr Rev 57(7):1423–1434.

  25. Fatih IM, Ibrahim C (2016) Encapsulation of probiotic bacteria with alginate-starch and evaluation of viability in storage conditions and in food. Res J Biotechnol 11(12):31–37 [Online].

  26. Yoosefian M, Sabaei S, Etminan N (2019) Encapsulation efficiency of single-walled carbon nanotube for Ifosfamide anti-cancer drug. Comput Biol Med 114:8, Art no 103433.

  27. Dolinina ES, Akimsheva EY, Parfenyuk EV (2019) Silica microcapsules as containers for protein drugs: direct and indirect encapsulation. J Mol Liq Proc Paper 287: Art no 110938.

  28. Chen JL et al (2019) Encapsulation and release of drug molecule pregabalin based on ultrashort single-walled carbon nanotubes. J Phys Chem C 123(14):9567–9574.

  29. Mlaouah M, Tangour B, El Khalifi M, Gharbi T, Picaud F (2018) The encapsulation of the gemcitabine anticancer drug into grapheme nest: a theoretical study. J Mol Model 24(4):9, Art no 102.

  30. Su YC, Zhao H, Wu JR, Xu JH (2016) One-step fabrication of silica colloidosomes with in situ drug encapsulation. RSC Adv 6(113):112292–112299.

  31. Peng PC, Hong RL, Tsai T, Chen CT (2019) Co-Encapsulation of chlorin e6 and chemotherapeutic drugs in a pegylated liposome enhance the efficacy of tumor treatment: pharmacokinetics and therapeutic efficacy. Pharmaceutics 11(11):17, Art no 617.

  32. Ghahremani S, Samadizadeh M, Khaleghian M, Shiraz NZ (2020). Theoretical study of encapsulation of Floxuridine anticancer drug into BN (9, 9–7) nanotube for medical application. Phosphorus Sulfur Silicon Relat Elem 195(4): 293-306.

  33. Castro N, Durrieu V, Raynaud C, Rouilly A, Rigal L, Quellet C (2016) Melt extrusion encapsulation of flavors: a review. Polym Rev Rev 56(1):137–186.

  34. Naeimirad M, Zadhoush A, Neisiany RE, Salimian S, Kotek R (2019) Melt-spun PLA liquid-filled fibers: physical, morphological, and thermal properties. J Text Inst 110(1):89–99.

    CAS  CrossRef  Google Scholar 

  35. Cherif C, Tran NHA, Kirsten M, Brunig H, Vogel R (2018) Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity. Express Polym Lett 12(3):203–214.

    CAS  CrossRef  Google Scholar 

  36. Ayad E, Cayla A, Rault F, Gonthier A, Campagne C, Devaux E (2018) Effect of viscosity ratio of two immiscible polymers on morphology in bicomponent melt spinning fibers. Adv Polym Technol 37(4):1134–1141.

  37. Iqbal K, Sun DM (2015) Development of thermal stable multifilament yarn containing micro-encapsulated phase change materials. Fibers Polym 16(5):1156–1162.

    CAS  CrossRef  Google Scholar 

  38. Lopez-Rubio A, Sanchez E, Sanz Y, Lagaron JM (2009) Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromol 10(10):2823–2829.

    CAS  CrossRef  Google Scholar 

  39. Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H (2017) Encapsulation of bioactive compound in electrospun fibers and its potential application. J Agric Food Chem Rev 65(42):9161–9179.

  40. Han FX, Zhang H, Zhao J, Zhao YH, Yuan XY (2012) In situ encapsulation of hydrogel in ultrafine fibers by suspension electrospinning. Polym Eng Sci 52(12):2695–2704.

  41. Dong B, Smith ME, Wnek GE (2009) Encapsulation of multiple biological compounds within a single electrospun fiber. Small 5(13):1508–1512.

    CAS  CrossRef  Google Scholar 

  42. Qi HX, Hu P, Xu J, Wang AJ (2006) Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromol 7(8):2327–2330.

    CAS  CrossRef  Google Scholar 

  43. McCann JT, Marquez M, Xia YN (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6(12):2868–2872.

  44. Nada AA, Abdelazeem RA, Elghandour AH, Abou-Zeid NY (2016) Ricinoleic acid encapsulation into ethyl cellulose electrospun fibers. J Nat Fibers 13(6):670–681.

  45. Li XR, Zhang H, Li H, Yuan XY (2010) Encapsulation of proteinase K in PELA ultrafine fibers by emulsion electrospinning: preparation and in vitro evaluation. Colloid Polym Sci 288(10–11):1113–1119.

  46. Granicka LH et al (2000) Encapsulation of parathyroid cells in hollow fibers: a preliminary report. Folia Histochem Cytobiol 38(3):129–131 [Online].

  47. Tammaro L, Russo G, Vittoria V (2009) Encapsulation of diclofenac molecules into poly(epsilon-caprolactone) electrospun fibers for delivery protection. J Nanomater 8, Art no 238206.

  48. Granicka LH, Kawiak J, Snochowski M, Wojcicki JM, Sabalinska S, Werynski A (2003) Polypropylene hollow fiber for cells isolation: Methods for evaluation of diffusive transport and quality of cells encapsulation. Artif Cells Blood Substit Immobil Biotechnol 31(3):249–262.

  49. Wan ACA, Yim EKF, Liao IC, Le Visage C, Leong KW (2004) Encapsulation of biologics in self-assembled fibers as biostructural units for tissue engineering. J Biomed Mater Res Part A 71A (4):586–595.

  50. Huang ZM, Yang AH (2006) Encapsulation of pure drugs ento the central part of polycaprolactone ultrafene fibers (in Chinese). Acta Polym Sin (1):48–52.

  51. Patel AC, Li SX, Yuan JM, Wei Y (2006) In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett 6(5):1042–1046.

  52. Souza MA, Sakamoto KY, Mattoso LHC (2014) Release of the diclofenac sodium by nanofibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) obtained from electrospinning and solution blow spinning. J Nanomater, Art no 129035.

  53. Diaz JE, Barrero A, Marquez M, Loscertales IG (2006) Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Adv Func Mater 16(16):2110–2116.

    CAS  CrossRef  Google Scholar 

  54. Wang J, Windbergs M (2019) Controlled dual drug release by coaxial electrospun fibers—impact of the core fluid on drug encapsulation and release. Int J Pharm 556:363–371.

  55. Jindal A et al (2018) Encapsulation and release of Zafirlukast from electrospun polyisobutylene-based thermoplastic elastomeric fiber mat. Eur Polym J 98:254–261.

  56. Aceituno-Medina M, Mendoza S, Lagaron JM, Lopez-Rubio A (2015) Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate—pullulan electrospun fibers. LWT-Food Sci Technol 62(2):970–975.

  57. Alborzi S, Lim LT, Kakuda Y (2013) Encapsulation of folic acid and its stability in sodium alginate-pectin-poly(ethylene oxide) electrospunfibres. J Microencapsul 30(1):64–71.

  58. Abbas S, Da Wei C, Hayat K, Zhang XM (2012) Ascorbic acid: microencapsulation techniques and trends-a review. Food Rev Int Rev 28(4):343–374.

  59. Shekarforoush E, Mendes AC, Baj V, Beeren SR, Chronakis IS (2017) Electrospun phospholipid fibers as micro-encapsulation and antioxidant matrices. Molecules 22(10):16, Art no 1708.

  60. Torkamani AE, Syahariza ZA, Norziah MH, Wan AKM, Juliano P (2018) Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning. Food Biosci 21:60–71.

  61. Hu W, Yu X (2012) Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers. RSC Adv 2(13):5580–5584.

  62. Lu Y et al (2019) Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem Eng J 355:532–539.

  63. Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28(11–12):1536–1550.

    CAS  CrossRef  Google Scholar 

  64. Shin Y, Yoo DI, Son K (2005) Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. J Appl Polym Sci 96(6):2005–2010.

    CAS  CrossRef  Google Scholar 

  65. Aftab W, Huang X, Wu W, Liang Z, Mahmood A, Zou R (2018) Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci 11(6):1392–1424.

  66. Liu CC et al (2020) Phase change materials application in battery thermal management system: a review. Materials 13(20), Art no 4622.

  67. Sinha-Ray S, Pelot DD, Zhou ZP, Rahman A, Wu XF, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22(18):9138–9146.

    CAS  CrossRef  Google Scholar 

  68. Dugan J and Kuckhoff E (2007) Multicomponent fiber comprising a phase change material. USA Patent, p WO 2007035483 A1

    Google Scholar 

  69. Chalco-Sandoval W, Fabra MJ, Lopez-Rubio A, Lagaron JM (2017) Use of phase change materials to develop electrospun coatings of interest in food packaging applications. J Food Eng 192:122–128.

    CAS  CrossRef  Google Scholar 

  70. Keskin NOS, Celebioglu A, Sarioglu OF, Uyar T, Tekinay T (2018) Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloid Surf B-Biointerfaces 161:169–176.

    CAS  CrossRef  Google Scholar 

  71. Murphy JP, Andriolo JM, Sutton NJ, Brockway MC, Skinner JL (2017) Coaxial hybrid perovskite fibers: synthesis and encapsulation in situ via electrospinning. J Vac Sci Technol B 35(6):6, Art no 06g402.

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S. (2022). Fibers as Containers for Encapsulation. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore.

Download citation