Skip to main content

Fibers as Containers for Encapsulation

  • 165 Accesses

Part of the Composites Science and Technology book series (CST)

Abstract

Encapsulation technique has been widely used to produce small particles i.e. capsules of functional materials which could be released at specific rate under certain environmental condition. Depending on the size of container, capsules can be categorized by micro capsules with particle size few micrometer to 2000 µm and nanocapsules with particle size up to 100 nm. Encapsulation of functional substances can be prepared by using few common techniques viz. spray drying, coacervation, emulsion polymerization etc. Various shell materials mainly hydrophilic or hydrophobic polymers or combination of hydrophilic/hydrophobic polymers are used to protect functional core materials. Fiber can be used as a container for the encapsulation product because of its high aspect ratio. Encapsulated fibers can be prepared by using various techniques viz. solution spinning, melt spinning, coaxial spinning, electro spinning etc. This chapter provide an overview of micro/nano encapsulated fibers. Various materials (both core and shell) used to prepare encapsulated particles are included. Further, the review described various micro and nano encapsulated fibers. Application of micro and nano encapsulated fibers in medicine, food, agrochemicals and textiles are discussed. Finally, the chapter has been concluded with several challenges of micro and nano encapsulated fibers.

Keywords

  • Microencapsulation
  • Nanoencapsulation
  • Functional ingredients
  • Stability
  • Core substance
  • Smart material
  • Drug delivery

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_3
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

(Reproduced with permission from Lopez-Rubio et al. Biomacromolecules, 10 (10), 2823–2829, 2009 © 2009 American Chemical Society [38].)

Fig. 3

(Reproduced with permission from McCann et al. Nano Lett., 6 (12), 2868–2872, 2006 © 2006 American Chemical Society [43].)

Fig. 4

(Reproduced with permission from Lancuski et al. Carbohydr. Polym., 158, 68–76, 2017 © 2016 Elsevier Ltd. [1].)

Fig. 5

(Reproduced with permission from Wang and Windbergs, International Journal of Pharmaceutics, vol. 556, pp. 363–371, 2019 © 2018 Elsevier B. V. [54].)

Fig. 6

(Reproduced with permission from Y. Lu et al., Chem. Eng. J., 355, 532–539, 2019 © 2018 Elsevier B. V. [62].)

Fig. 7

(Reproduced with permission from Keskin et al. Colloid Surf. B-Biointerfaces, 161, 169–176, 2018 © 2017 Elsevier B. V. [70].)

References

  1. Lancuski A, Abu Ammar A, Avrahami R, Vilensky R, Vasilyev G, Zussman E (2017) Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydr Polym 158:68–76. https://doi.org/10.1016/j.carbpol.2016.12.003

  2. Gomes MHG, Kurozawa LE (2020) Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. J Food Eng 267, Art no 109761. https://doi.org/10.1016/j.jfoodeng.2019.109761

  3. Fernandez A, Torres-Giner S, Lagaron JM (2009) Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids 23(5):1427–1432. https://doi.org/10.1016/j.foodhyd.2008.10.011

  4. Khan WA, Butt MS, Pasha I, Jamil A (2020) Microencapsulation of vitamin D in protein matrices: in vitro release and storage stability. J Food Meas Charact 14:1172–1182. https://doi.org/10.1007/s11694-019-00366-3

  5. Lavanya MN, Kathiravan T, Moses JA, Anandharamakrishnan C (2020) Influence of spray-drying conditions on microencapsulation of fish oil and chia oil. Drying Technol 38(3):279–292. https://doi.org/10.1080/07373937.2018.1553181

    CAS  CrossRef  Google Scholar 

  6. Lozinska N, Glowacz-Rozynska A, Artichowicz W, Lu YQ, Jungnickel C (2020) Microencapsulation of fish oil—determination of optimal wall material and encapsulation methodology. J Food Eng 268, Art no 109730. https://doi.org/10.1016/j.jfoodeng.2019.109730

  7. Kurd F, Fathi M, Shekarchizadeh H (2019) Nanoencapsulation of hesperetin using basil seed mucilage nanofibers: characterization and release modeling. Food Biosc 32, Art no 100475. https://doi.org/10.1016/j.fbio.2019.100475

  8. Walia N, Dasgupta N, Ranjan S, Ramalingam C, Gandhi M (2019) Methods for nanoemulsion and nanoencapsulation of food bioactives. Environ Chem Lett 17(4):1471–1483. https://doi.org/10.1007/s10311-019-00886-w

    CAS  CrossRef  Google Scholar 

  9. Zompero RHD, Lopez-Rubio A, de Pinho SC, Lagaron JM, de la Torre LG (2015) Hybrid encapsulation structures based on beta-carotene-loaded nanoliposomes within electrospun fibers. Colloid Surf B-Biointerfaces 134:475–482. https://doi.org/10.1016/j.colsurfb.2015.03.015

    CAS  CrossRef  Google Scholar 

  10. Cheng J, Park D, Jun Y, Lee J, Hyun J, Lee SH (2016) Biomimetic spinning of silk fibers and in situ cell encapsulation. Lab Chip 16(14):2654–2661. https://doi.org/10.1039/c6lc00488a

    CAS  CrossRef  Google Scholar 

  11. Li XQ, Su Y, Liu SP, Tan LJ, Mo XM, Ramakrishna S (2010) Encapsulation of proteins in poly(L-lactide-co-caprolactone) fibers by emulsion electrospinning. Colloid Surf B-Biointerfaces 75(2):418–424. https://doi.org/10.1016/j.colsurfb.2009.09.014

    CAS  CrossRef  Google Scholar 

  12. Triches M, Brusch A, Hald J (2015) Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique. Appl Phys B-Lasers Opt 121(3):251–258. https://doi.org/10.1007/s00340-015-6224-8

  13. Bauer AJP, Zeng TY, Liu JZ, Uthaisar C, Li BB (2014) The enhanced encapsulation capacity of polyhedral oligomeric silsesquioxane-based copolymers for the fabrication of electrospun core/shell fibers. Macromol Rapid Commun 35(7):715–720. https://doi.org/10.1002/marc.201400032

  14. Ghitescu RE, Popa AM, Popa VI, Rossi RM, Fortunato G (2015) Encapsulation of polyphenols into pHEMA e-spun fibers and determination of their antioxidant activities. Int J Pharm 494(1):278–287. https://doi.org/10.1016/j.ijpharm.2015.08.020

  15. Korehei R, Kadla JF (2014) Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydr Polym 100:150–157. https://doi.org/10.1016/j.carbpol.2013.03.079

  16. Aceituno-Medina M, Mendoza S, Rodriguez BA, Lagaron JM, Lopez-Rubio A (2015) Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. J Funct Food 12:332–341. https://doi.org/10.1016/j.jff.2014.11.028.

  17. Chung WJ, Merzlyak A, Lee SW (2010) Fabrication of engineered M13 bacteriophages into liquid crystalline films and fibers for directional growth and encapsulation of fibroblasts. Soft Matter 6(18):4454–4459. https://doi.org/10.1039/c0sm00199f

    CAS  CrossRef  Google Scholar 

  18. Zussman E (2011) Encapsulation of cells within electrospun fibers. Polym Adv Technol Rev 22(3):366–371. https://doi.org/10.1002/pat.1812

  19. Singh MN, Hemant KSY, Ram M, Shivakumar HG (2010) Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci 5(2):65–77

    CAS  Google Scholar 

  20. Ordanini S, Cellesi F (2018) Complex polymeric architectures self-assembling in unimolecular micelles: preparation, characterization and drug nanoencapsulation. Pharm Rev 10(4):19, Art no 209. https://doi.org/10.3390/pharmaceutics10040209

  21. Kumari A, Singla R, Guliani A, Yadav SK (2014) Nanoencapsulation for drug delivery. Excli J Rev 13:265–286 [Online]. https://www.excli.de/index.php/excli/article/view/700

  22. Zhu F (2017) Encapsulation and delivery of food ingredients using starch based systems. Food Chem Rev 229:542–552. https://doi.org/10.1016/j.foodchem.2017.02.101

  23. Aditya NP, Espinosa YG, Norton IT (2017) Encapsulation systems for the delivery of hydrophilic nutraceuticals: food application. Biotechnol Adv Rev 35(4):450–457. https://doi.org/10.1016/j.biotechadv.2017.03.012

  24. Ruiz JCR, Vazquez EDO, Campos MRS (2017) Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods. Crit Rev Food Sci Nutr Rev 57(7):1423–1434. https://doi.org/10.1080/10408398.2014.1002906

  25. Fatih IM, Ibrahim C (2016) Encapsulation of probiotic bacteria with alginate-starch and evaluation of viability in storage conditions and in food. Res J Biotechnol 11(12):31–37 [Online]. https://worldresearchersassociations.com/Archives/RJBT/Vol(11)2016/December2016.aspx

  26. Yoosefian M, Sabaei S, Etminan N (2019) Encapsulation efficiency of single-walled carbon nanotube for Ifosfamide anti-cancer drug. Comput Biol Med 114:8, Art no 103433. https://doi.org/10.1016/j.compbiomed.2019.103433

  27. Dolinina ES, Akimsheva EY, Parfenyuk EV (2019) Silica microcapsules as containers for protein drugs: direct and indirect encapsulation. J Mol Liq Proc Paper 287: Art no 110938. https://doi.org/10.1016/j.molliq.2019.110938

  28. Chen JL et al (2019) Encapsulation and release of drug molecule pregabalin based on ultrashort single-walled carbon nanotubes. J Phys Chem C 123(14):9567–9574. https://doi.org/10.1021/acs.jpcc.9b00675

  29. Mlaouah M, Tangour B, El Khalifi M, Gharbi T, Picaud F (2018) The encapsulation of the gemcitabine anticancer drug into grapheme nest: a theoretical study. J Mol Model 24(4):9, Art no 102. https://doi.org/10.1007/s00894-018-3627-6

  30. Su YC, Zhao H, Wu JR, Xu JH (2016) One-step fabrication of silica colloidosomes with in situ drug encapsulation. RSC Adv 6(113):112292–112299. https://doi.org/10.1039/c6ra19048k

  31. Peng PC, Hong RL, Tsai T, Chen CT (2019) Co-Encapsulation of chlorin e6 and chemotherapeutic drugs in a pegylated liposome enhance the efficacy of tumor treatment: pharmacokinetics and therapeutic efficacy. Pharmaceutics 11(11):17, Art no 617. https://doi.org/10.3390/pharmaceutics11110617

  32. Ghahremani S, Samadizadeh M, Khaleghian M, Shiraz NZ (2020). Theoretical study of encapsulation of Floxuridine anticancer drug into BN (9, 9–7) nanotube for medical application. Phosphorus Sulfur Silicon Relat Elem 195(4): 293-306. https://doi.org/10.1080/10426507.2019.1687479

  33. Castro N, Durrieu V, Raynaud C, Rouilly A, Rigal L, Quellet C (2016) Melt extrusion encapsulation of flavors: a review. Polym Rev Rev 56(1):137–186. https://doi.org/10.1080/15583724.2015.1091776

  34. Naeimirad M, Zadhoush A, Neisiany RE, Salimian S, Kotek R (2019) Melt-spun PLA liquid-filled fibers: physical, morphological, and thermal properties. J Text Inst 110(1):89–99. https://doi.org/10.1080/00405000.2018.1465336

    CAS  CrossRef  Google Scholar 

  35. Cherif C, Tran NHA, Kirsten M, Brunig H, Vogel R (2018) Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity. Express Polym Lett 12(3):203–214. https://doi.org/10.3144/expresspolymlett.2018.19

    CAS  CrossRef  Google Scholar 

  36. Ayad E, Cayla A, Rault F, Gonthier A, Campagne C, Devaux E (2018) Effect of viscosity ratio of two immiscible polymers on morphology in bicomponent melt spinning fibers. Adv Polym Technol 37(4):1134–1141. https://doi.org/10.1002/adv.21772

  37. Iqbal K, Sun DM (2015) Development of thermal stable multifilament yarn containing micro-encapsulated phase change materials. Fibers Polym 16(5):1156–1162. https://doi.org/10.1007/s12221-015-1156-9

    CAS  CrossRef  Google Scholar 

  38. Lopez-Rubio A, Sanchez E, Sanz Y, Lagaron JM (2009) Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromol 10(10):2823–2829. https://doi.org/10.1021/bm900660b

    CAS  CrossRef  Google Scholar 

  39. Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H (2017) Encapsulation of bioactive compound in electrospun fibers and its potential application. J Agric Food Chem Rev 65(42):9161–9179. https://doi.org/10.1021/acs.jafc.7b02956

  40. Han FX, Zhang H, Zhao J, Zhao YH, Yuan XY (2012) In situ encapsulation of hydrogel in ultrafine fibers by suspension electrospinning. Polym Eng Sci 52(12):2695–2704. https://doi.org/10.1002/pen.23227

  41. Dong B, Smith ME, Wnek GE (2009) Encapsulation of multiple biological compounds within a single electrospun fiber. Small 5(13):1508–1512. https://doi.org/10.1002/smll.200801750

    CAS  CrossRef  Google Scholar 

  42. Qi HX, Hu P, Xu J, Wang AJ (2006) Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromol 7(8):2327–2330. https://doi.org/10.1021/bm060264z

    CAS  CrossRef  Google Scholar 

  43. McCann JT, Marquez M, Xia YN (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6(12):2868–2872. https://doi.org/10.1021/nl0620839

  44. Nada AA, Abdelazeem RA, Elghandour AH, Abou-Zeid NY (2016) Ricinoleic acid encapsulation into ethyl cellulose electrospun fibers. J Nat Fibers 13(6):670–681. https://doi.org/10.1080/15440478.2015.1102792

  45. Li XR, Zhang H, Li H, Yuan XY (2010) Encapsulation of proteinase K in PELA ultrafine fibers by emulsion electrospinning: preparation and in vitro evaluation. Colloid Polym Sci 288(10–11):1113–1119. https://doi.org/10.1007/s00396-010-2235-5

  46. Granicka LH et al (2000) Encapsulation of parathyroid cells in hollow fibers: a preliminary report. Folia Histochem Cytobiol 38(3):129–131 [Online]. https://pubmed.ncbi.nlm.nih.gov/10970072/

  47. Tammaro L, Russo G, Vittoria V (2009) Encapsulation of diclofenac molecules into poly(epsilon-caprolactone) electrospun fibers for delivery protection. J Nanomater 8, Art no 238206. https://doi.org/10.1155/2009/238206

  48. Granicka LH, Kawiak J, Snochowski M, Wojcicki JM, Sabalinska S, Werynski A (2003) Polypropylene hollow fiber for cells isolation: Methods for evaluation of diffusive transport and quality of cells encapsulation. Artif Cells Blood Substit Immobil Biotechnol 31(3):249–262. https://doi.org/10.1081/bio-120023156

  49. Wan ACA, Yim EKF, Liao IC, Le Visage C, Leong KW (2004) Encapsulation of biologics in self-assembled fibers as biostructural units for tissue engineering. J Biomed Mater Res Part A 71A (4):586–595. https://doi.org/10.1002/jbm.a.30158

  50. Huang ZM, Yang AH (2006) Encapsulation of pure drugs ento the central part of polycaprolactone ultrafene fibers (in Chinese). Acta Polym Sin (1):48–52. https://doi.org/10.3724/SP.J.1105.2006.00048

  51. Patel AC, Li SX, Yuan JM, Wei Y (2006) In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett 6(5):1042–1046. https://doi.org/10.1021/nl0604560

  52. Souza MA, Sakamoto KY, Mattoso LHC (2014) Release of the diclofenac sodium by nanofibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) obtained from electrospinning and solution blow spinning. J Nanomater, Art no 129035. https://doi.org/10.1155/2014/129035

  53. Diaz JE, Barrero A, Marquez M, Loscertales IG (2006) Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Adv Func Mater 16(16):2110–2116. https://doi.org/10.1002/adfm.200600204

    CAS  CrossRef  Google Scholar 

  54. Wang J, Windbergs M (2019) Controlled dual drug release by coaxial electrospun fibers—impact of the core fluid on drug encapsulation and release. Int J Pharm 556:363–371. https://doi.org/10.1016/j.ijpharm.2018.12.026

  55. Jindal A et al (2018) Encapsulation and release of Zafirlukast from electrospun polyisobutylene-based thermoplastic elastomeric fiber mat. Eur Polym J 98:254–261. https://doi.org/10.1016/j.eurpolymj.2017.11.012

  56. Aceituno-Medina M, Mendoza S, Lagaron JM, Lopez-Rubio A (2015) Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate—pullulan electrospun fibers. LWT-Food Sci Technol 62(2):970–975. https://doi.org/10.1016/j.lwt.2015.02.025

  57. Alborzi S, Lim LT, Kakuda Y (2013) Encapsulation of folic acid and its stability in sodium alginate-pectin-poly(ethylene oxide) electrospunfibres. J Microencapsul 30(1):64–71. https://doi.org/10.3109/02652048.2012.696153

  58. Abbas S, Da Wei C, Hayat K, Zhang XM (2012) Ascorbic acid: microencapsulation techniques and trends-a review. Food Rev Int Rev 28(4):343–374. https://doi.org/10.1080/87559129.2011.635390

  59. Shekarforoush E, Mendes AC, Baj V, Beeren SR, Chronakis IS (2017) Electrospun phospholipid fibers as micro-encapsulation and antioxidant matrices. Molecules 22(10):16, Art no 1708. https://doi.org/10.3390/molecules22101708

  60. Torkamani AE, Syahariza ZA, Norziah MH, Wan AKM, Juliano P (2018) Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning. Food Biosci 21:60–71. https://doi.org/10.1016/j.fbio.2017.12.001

  61. Hu W, Yu X (2012) Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers. RSC Adv 2(13):5580–5584. https://doi.org/10.1039/c2ra20532g

  62. Lu Y et al (2019) Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem Eng J 355:532–539. https://doi.org/10.1016/j.cej.2018.08.189

  63. Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28(11–12):1536–1550. https://doi.org/10.1016/j.applthermaleng.2007.08.009

    CAS  CrossRef  Google Scholar 

  64. Shin Y, Yoo DI, Son K (2005) Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. J Appl Polym Sci 96(6):2005–2010. https://doi.org/10.1002/app.21438

    CAS  CrossRef  Google Scholar 

  65. Aftab W, Huang X, Wu W, Liang Z, Mahmood A, Zou R (2018) Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci 11(6):1392–1424. https://doi.org/10.1039/C7EE03587J

  66. Liu CC et al (2020) Phase change materials application in battery thermal management system: a review. Materials 13(20), Art no 4622. https://doi.org/10.3390/ma13204622.

  67. Sinha-Ray S, Pelot DD, Zhou ZP, Rahman A, Wu XF, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22(18):9138–9146. https://doi.org/10.1039/c2jm15696b

    CAS  CrossRef  Google Scholar 

  68. Dugan J and Kuckhoff E (2007) Multicomponent fiber comprising a phase change material. USA Patent, p WO 2007035483 A1

    Google Scholar 

  69. Chalco-Sandoval W, Fabra MJ, Lopez-Rubio A, Lagaron JM (2017) Use of phase change materials to develop electrospun coatings of interest in food packaging applications. J Food Eng 192:122–128. https://doi.org/10.1016/j.jfoodeng.2015.01.019

    CAS  CrossRef  Google Scholar 

  70. Keskin NOS, Celebioglu A, Sarioglu OF, Uyar T, Tekinay T (2018) Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloid Surf B-Biointerfaces 161:169–176. https://doi.org/10.1016/j.colsurfb.2017.10.047

    CAS  CrossRef  Google Scholar 

  71. Murphy JP, Andriolo JM, Sutton NJ, Brockway MC, Skinner JL (2017) Coaxial hybrid perovskite fibers: synthesis and encapsulation in situ via electrospinning. J Vac Sci Technol B 35(6):6, Art no 06g402. https://doi.org/10.1116/1.4991724

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S. (2022). Fibers as Containers for Encapsulation. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_3

Download citation