Skip to main content

Electrospinning Techniques for Encapsulation

  • 171 Accesses

Part of the Composites Science and Technology book series (CST)

Abstract

Bioactive constituents like vitamins, essential oils, enzymes, antioxidants and flavors have important significance but some properties like poor water solubility, low stability against temperature, light, oxygen and low bioavailability limit their usage in various applications. Herewith it has been significant to improve new encapsulation technologies to use bioactive compounds effectively. In this respect, nano capsulation holds promise in the improvement of biocompatibility, controlled release and the proper targeting of large quantities of living organisms. Nowadays, electrospun nanofibers with their unique structure are incredibly favorable materials that are important in numerous usage fields. Electrospinning is one of the economical and easy technologies to produce nanofiber/nanofibrous webs which have excellent properties like high surface area-to-volume ratio, being feather-light, nano-porous nature, adaptability in surface functionalities, good mechanical properties and high permeability. This process improves the physical and functional properties of nano and microstructures and assures highly effective encapsulation.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_2
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. . Colfen (2003) Precipitation of carbonates. Curr Opin Colloid Interface Sci 8:145–155. https://doi.org/10.1016/S1359-0294

  2. Ahmad MU (2006) Nanotechnology: emerging interest, opportunities, and challenges, lipids in nanotechnology. AOCS Press. https://doi.org/10.1016/B978-0-9818936-7-9.50004-4

  3. Almetwally AA et al (2017) Technology of nano-fibers: production techniques and properties—critical review. J Text Assoc 78(1):5–14

    Google Scholar 

  4. Amiri N et al (2018) Optimization of Chitosan-Gelatin nanofibers production: investigating the effect of solution properties and working parameters on fibers diameter. Bionanoscience 8(3):778–789. https://doi.org/10.1007/s12668-018-0540-5

    CrossRef  Google Scholar 

  5. Asbahani A El et al (2015) Essential oils: from extraction to encapsulation. Int J Pharm. Elsevier B.V. 483(1–2):220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069

  6. Ataei S et al (2020) Essential oils-loaded electrospun biopolymers: a future perspective for active food packaging. Adv Polym Technol 2020:1–21. https://doi.org/10.1155/2020/9040535

    CAS  CrossRef  Google Scholar 

  7. Aytac Z et al (2017) ‘Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem Elsevier Ltd. 233:117–124. https://doi.org/10.1016/j.foodchem.2017.04.095

    CAS  CrossRef  Google Scholar 

  8. Aytac Z et al (2016) Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: release behavior and antioxidant activity of gallic acid. Mater Sci Eng C. Elsevier B.V. 63:231–239. https://doi.org/10.1016/j.msec.2016.02.063

  9. Azaddin AF et al (2020) Entrapment of Volvariella volvacea spores in electrospun nanofibers. 1:15–20

    Google Scholar 

  10. Bakkali F et al (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475. https://doi.org/10.1016/j.fct.2007.09.106

    CAS  CrossRef  Google Scholar 

  11. Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 1(3):232–248. https://doi.org/10.3390/membranes1030232

    CAS  CrossRef  Google Scholar 

  12. Balogh-Weiser D et al (2018) Electrospun nanofibers for entrapment of biomolecules. IntechOpen, pp 135–147. https://doi.org/10.1016/j.colsurfa.2011.12.014

  13. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    CAS  CrossRef  Google Scholar 

  14. De Billerbeck VG (2007) Huiles essentielles et bactéries résistantes aux antibiotiques. Phytotherapie 5(5):249–253. https://doi.org/10.1007/s10298-007-0265-z

    CAS  CrossRef  Google Scholar 

  15. Bui X-T et al (2019) In: Agarwal AK, Pandey A (eds) Water and wastewater treatment technologies energy, environment, and sustainability. http://www.springer.com/series/15901

  16. Can Başer KH, Buchbauer G (2015) Handbook of essential oils: science, technology, and applications, 2nd edn. https://doi.org/10.1201/b19393

  17. Casper CL et al (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578. https://doi.org/10.1021/ma0351975

    CAS  CrossRef  Google Scholar 

  18. Celebioglu A et al (2018) Encapsulation of camphor in cyclodextrin inclusion complex nanofibers via polymer-free electrospinning: enhanced water solubility, high temperature stability, and slow release of camphor. J Mater Sci Springer US 53(7):5436–5449. https://doi.org/10.1007/s10853-017-1918-4

    CAS  CrossRef  Google Scholar 

  19. Celebioglu A, Uyar T (2011) Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir 27(10):6218–6226. https://doi.org/10.1021/la1050223

    CAS  CrossRef  Google Scholar 

  20. Celebioglu A, Uyar T (2011b) Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett Elsevier B.V. 65(14):2291–2294. https://doi.org/10.1016/j.matlet.2011.04.039

  21. Cho DK et al (2009) A UDP-based protocol for mobile robot control over wireless internet. In: 2009 2nd international conference on robot communication and coordination, RoboComm 2009. https://doi.org/10.4108/icst.robocomm2009.6076

  22. Chomachayi MD, Solouk A, Mirzadeh H (2016) Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer. Prog Biomater Springer Berlin Heidelberg 5(1):71–80. https://doi.org/10.1007/s40204-016-0046-6

  23. Colín-Orozco J et al (2015) Properties of poly (ethylene oxide)/whey protein isolate nanofibers prepared by electrospinning. Food Biophys 10(2):134–144. https://doi.org/10.1007/s11483-014-9372-1

    CrossRef  Google Scholar 

  24. Deitzel JM et al (2001) The effect of processing variables on the morphology of electrospun. Polymer 42:261–272

    CAS  CrossRef  Google Scholar 

  25. Dias MI, Ferreira ICFR, Barreiro MF (2015) Microencapsulation of bioactives for food applications. Food Funct R Soc Chem 6(4):1035–1052. https://doi.org/10.1039/c4fo01175a

    CAS  CrossRef  Google Scholar 

  26. Donsì F et al (2011) Encapsulation of bioactive compounds in nanoemulsion—based delivery systems. Procedia Food Sci Elsevier Srl 1:1666–1671. https://doi.org/10.1016/j.profoo.2011.09.246

    CAS  CrossRef  Google Scholar 

  27. Duru Kamaci U, Peksel A (2020) Enhanced catalytic activity of immobilized phytase into polyvinyl alcohol-sodium alginate based electrospun nanofibers. Catal Lett Springer US (0123456789). https://doi.org/10.1007/s10562-020-03339-0

  28. Esfahani MZ et al (2011) Polypropylene nanofibre. Nanofibers and nanotechnology research advances

    Google Scholar 

  29. Espín JC, García-Conesa MT, Tomás-Barberán FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68(22–24):2986–3008. https://doi.org/10.1016/j.phytochem.2007.09.014

    CAS  CrossRef  Google Scholar 

  30. Ezhilarasi PN et al (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647. https://doi.org/10.1007/s11947-012-0944-0

    CAS  CrossRef  Google Scholar 

  31. El Fawal G (2019) Polymer nanofibers electrospinning: a review. Egypt J Chem. https://doi.org/10.21608/ejchem.2019.14837.1898

    CrossRef  Google Scholar 

  32. Feng X et al (2019) Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release Elsevier 302(January):19–41. https://doi.org/10.1016/j.jconrel.2019.03.020

    CAS  CrossRef  Google Scholar 

  33. Fennessey SF, Farris RJ (2004) Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 45(12):4217–4225. https://doi.org/10.1016/j.polymer.2004.04.001

    CAS  CrossRef  Google Scholar 

  34. Fonseca LM et al (2020) Electrospun potato starch nanofibers for thyme essential oil encapsulation: antioxidant activity and thermal resistance. J Sci Food Agric 100(11):4263–4271. https://doi.org/10.1002/jsfa.10468

    CAS  CrossRef  Google Scholar 

  35. Gao S et al (2020) Encapsulation of thiabendazole in hydroxypropyl-β-cyclodextrin nanofibers via polymer-free electrospinning and its characterization. Pest Manag Sci (February). https://doi.org/10.1002/ps.5885

  36. García-Moreno PJ et al (2016) ‘Encapsulation of fish oil in nanofibers by emulsion electrospinning: physical characterization and oxidative stability. J Food Eng Elsevier Ltd 183:39–49. https://doi.org/10.1016/j.jfoodeng.2016.03.015

    CAS  CrossRef  Google Scholar 

  37. Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1):1–19. https://doi.org/10.1063/1.3567097

    CAS  CrossRef  Google Scholar 

  38. Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll Elsevier Ltd 51:227–240. https://doi.org/10.1016/j.foodhyd.2015.05.024

    CAS  CrossRef  Google Scholar 

  39. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703. https://doi.org/10.1002/anie.200604646

    CAS  CrossRef  Google Scholar 

  40. Guillard V et al (2009) Food preservative content reduction by controlling sorbic acid release from a superficial coating. Innov Food Sci Emerg Technol Elsevier Ltd 10(1):108–115. https://doi.org/10.1016/j.ifset.2008.07.001

    CAS  CrossRef  Google Scholar 

  41. Gómez-Mascaraque LG et al (2017) Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits. LWT Food Sci Technol 81:77–86. https://doi.org/10.1016/j.lwt.2017.03.041

    CAS  CrossRef  Google Scholar 

  42. Göksen G et al (2020) Phytochemical-loaded electrospun nanofibers as novel active edible films: characterization and antibacterial efficiency in cheese slices. Food Control 112: 107133. https://doi.org/10.1016/j.foodcont.2020.107133

  43. Hajhashemi V, Ghannadi A, Sharif B (2003) Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol 89(1):67–71. https://doi.org/10.1016/S0378-8741(03)00234-4

  44. Heunis TDJ, Botes M, Dicks LMT (2010) Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers. Probiotics Antimicrob Proteins 2(1):46–51. https://doi.org/10.1007/s12602-009-9024-9

    CAS  CrossRef  Google Scholar 

  45. Hu Q, Wu C, Zhang H (2020) Preparation and optimization of a biomimetic triple-layered vascular scaffold based on coaxial electrospinning. Appl Biochem Biotechnol 190(3):1106–1123. https://doi.org/10.1007/s12010-019-03147-2

    CAS  CrossRef  Google Scholar 

  46. Jafari SM (ed) (2017) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press

    Google Scholar 

  47. Jia H et al (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18(5):1027–1032. https://doi.org/10.1021/bp020042m

    CAS  CrossRef  Google Scholar 

  48. Joye IJ, Davidov-Pardo G, McClements DJ (2014) Nanotechnology for increased micronutrient bioavailability. Trends Food Sci Technol Elsevier Ltd 40(2):168–182. https://doi.org/10.1016/j.tifs.2014.08.006

    CAS  CrossRef  Google Scholar 

  49. Kamel BM et al (2016) Rheology and thermal conductivity of calcium grease containing multi-walled carbon nanotube. Fuller Nanotub Carbon Nanostructures Taylor & Francis 24(4):260–265. https://doi.org/10.1080/1536383X.2016.1143462

    CAS  CrossRef  Google Scholar 

  50. Karim SA et al (2018) Mechanical properties and the characterization of polyacrylonitrile/carbon nanotube composite nanofiber. Arab J Sci Eng Springer, Berlin Heidelberg 43(9):4697–4702. https://doi.org/10.1007/s13369-018-3065-x

    CAS  CrossRef  Google Scholar 

  51. Kim JS, Reneker DH (1999) Polybenzimidazole nanofiber produced by electrospinning. Polym Eng Sci 39(5):849–854. https://doi.org/10.1002/pen.11473

    CAS  CrossRef  Google Scholar 

  52. Kour H et al (2015) Nanotechnology –new lifeline for food industry. Crit Rev Food Sci Nutr 8398:00–00. https://doi.org/10.1080/10408398.2013.802662

    CrossRef  Google Scholar 

  53. Kriegel C, Kit KM, McClements DJ, Weiss J (2009) Influence of surfactant type and concentration on electrospinning of chitosan–poly(ethylene oxide) blend nanofibers. Food Biophys 4(3):213–228. https://doi.org/10.1007/s11483-009-9119-6

    CrossRef  Google Scholar 

  54. Lassalle V, Ferreira ML (2007) PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 7(6):767–783. https://doi.org/10.1002/mabi.200700022

    CAS  CrossRef  Google Scholar 

  55. Law JX et al (2017) Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regen Med Korean Tissue Engineering and Regenerative Medicine Society 14(6):699–718. https://doi.org/10.1007/s13770-017-0075-9

    CrossRef  Google Scholar 

  56. Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938. https://doi.org/10.1021/nl049590f

    CAS  CrossRef  Google Scholar 

  57. López-Rubio A et al (2009) Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromol 10(10):2823–2829. https://doi.org/10.1021/bm900660b

    CAS  CrossRef  Google Scholar 

  58. Matsumoto H, Tanioka A, Materials P (2021) Encyclopedia of polymeric nanomaterials, pp 9–12. https://doi.org/10.1007/978-3-642-36199-9

  59. Megelski S et al (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466. https://doi.org/10.1021/ma020444a

    CAS  CrossRef  Google Scholar 

  60. Miletić A et al (2019) Encapsulation of fatty oils into electrospun nanofibers for cosmetic products with antioxidant activity. Appl Sci (Switzerland) 9(15). https://doi.org/10.3390/app9152955

  61. Mirjalili M, Zohoori S (2016) Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostructure Chem Springer, Berlin Heidelberg 6(3):207–213. https://doi.org/10.1007/s40097-016-0189-y

    CAS  CrossRef  Google Scholar 

  62. Mirmohammad Sadeghi SA et al (2020) Single nozzle electrospinning of encapsulated epoxy and mercaptan in PAN for self-healing application. Polymer Elsevier Ltd 186(November 2019):122007. https://doi.org/10.1016/j.polymer.2019.122007

  63. Mo X, Chen Z, Weber HJ (2007) Electrospun nanofibers of collagen-chitosan and P(LLA-CL) for tissue engineering. Front Mater Sci Chin 1(1):20–23. https://doi.org/10.1007/s11706-007-0004-2

    CrossRef  Google Scholar 

  64. Mojaveri SJ, Hosseini SF, Gharsallaoui A (2020) Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats. Carbohydr Polym Elsevier 241(February):116278. https://doi.org/10.1016/j.carbpol.2020.116278

  65. Murthy KNC et al (2018) Nanoencapsulation : an advanced nanotechnological nanoencapsulation : an advanced nanotechnological approach to enhance the biological efficacy of curcumin. (October). https://doi.org/10.1021/bk-2018-1286.ch021

  66. Nemati S et al (2019) Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg Springer Singapore 6(1). https://doi.org/10.1186/s40580-019-0209-y

  67. Neo YP, Ray S, Perera CO (2018) Nanostructures for food applications, role of materials science in food bioengineering. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811448-3/00004-8

  68. Paredes AJ et al (2016) Nanoencapsulation in the food industry: manufacture, applications and characterization. 1(1):56–79

    Google Scholar 

  69. Perry NSL et al (2003) Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behav 75(3):651–659. https://doi.org/10.1016/S0091-3057(03)00108-4

    CAS  CrossRef  Google Scholar 

  70. Pourhojat F et al (2017) Evaluation of poly ε-caprolactone electrospun nanofibers loaded with Hypericum perforatum extract as a wound dressing. Res Chem Intermed 297–320. https://doi.org/10.1007/s11164-016-2623-7

  71. Pérez-Masiá R, Lagaron JM, Lopez-Rubio A (2015) Morphology and stability of edible lycopene-containing micro- and nanocapsules produced through electrospraying and spray drying. Food Bioprocess Technol 8(2):459–470. https://doi.org/10.1007/s11947-014-1422-7

    CAS  CrossRef  Google Scholar 

  72. Ramakrishna S et al (2006) Electrospun nanofibers: solving global issues. Mater Today Elsevier Ltd 9(3):40–50. https://doi.org/10.1016/S1369-7021(06)71389-X

    CAS  CrossRef  Google Scholar 

  73. Katrina A, Rieger Jessica D, Schiffman (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113:561–568. https://doi.org/10.1016/j.carbpol.2014.06.075

    CAS  CrossRef  Google Scholar 

  74. Roslan NSA et al (2018) Nylon electrospun nanofibre water filtration media for wastewater treatment. Mater Res Express 5(10). https://doi.org/10.1088/2053-1591/aada94

  75. Rostamabadi H et al (2020) Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci Technol Elsevier 100(March):190–209. https://doi.org/10.1016/j.tifs.2020.04.012

    CAS  CrossRef  Google Scholar 

  76. Safdari F et al (2017) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose Springer, Netherlands 24(2):755–767. https://doi.org/10.1007/s10570-016-1137-1

    CAS  CrossRef  Google Scholar 

  77. Sakai S et al (2010) Enhanced catalytic activity of lipase in situ encapsulated in electrospun polystyrene fibers by subsequent water supply. Catal Commun Elsevier B.V. 11(6):576–580. https://doi.org/10.1016/j.catcom.2009.12.023

  78. Salalha W et al (2006) Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology 17(18):4675–4681. https://doi.org/10.1088/0957-4484/17/18/025

    CAS  CrossRef  Google Scholar 

  79. San NO et al (2014) Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Adv 4(61):32249–32255. https://doi.org/10.1039/c4ra04250f

    CAS  CrossRef  Google Scholar 

  80. San Keskin NO et al (2018) Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids Surf B Biointerfaces Elsevier B.V. 161:169–176. https://doi.org/10.1016/j.colsurfb.2017.10.047

  81. Sarioglu OF et al (2017) Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water. Colloids Surf B Biointerfaces Elsevier B.V. 152:245–251. https://doi.org/10.1016/j.colsurfb.2017.01.034

  82. Schiffman JD, Schauer CL (2007) One-step electrospinning of cross-linked Chitosan fibers. Biomacromol 8(9):2665–2667. https://doi.org/10.1021/bm7006983

    CAS  CrossRef  Google Scholar 

  83. Shankar A, Seyam AFM, Hudson SM (2013) Electrospinning of soy protein fibers and their compatibility with synthetic polymers. J Text Appar Technol Manag 8(1)

    Google Scholar 

  84. Shishir MRI et al (2018) ‘Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol Elsevier Ltd 78:34–60. https://doi.org/10.1016/j.tifs.2018.05.018

    CAS  CrossRef  Google Scholar 

  85. Silva J et al (2003) Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol 89(2–3):277–283. https://doi.org/10.1016/j.jep.2003.09.007

    CAS  CrossRef  Google Scholar 

  86. Siqueira NM et al (2015) Poly (lactic acid)/chitosan fiber mats: Investigation of effects of the support on lipase immobilization. Int J Biol Macromol. Elsevier B.V. 72:998–1004. https://doi.org/10.1016/j.ijbiomac.2014.08.048

  87. Solaberrieta I et al (2020) Encapsulation of bioactive compounds from aloe vera agrowastes in electrospun poly (ethylene oxide) nanofibers. Polymers 12(6). https://doi.org/10.3390/polym12061323

  88. Song J et al (2012) Enhanced catalytic activity of lipase encapsulated in PCL nanofibers. Langmuir 28(14):6157–6162. https://doi.org/10.1021/la300469s

    CAS  CrossRef  Google Scholar 

  89. Sullivan ST et al (2014) Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocoll Elsevier Ltd 35:36–50. https://doi.org/10.1016/j.foodhyd.2013.07.023

    CAS  CrossRef  Google Scholar 

  90. Surendhiran D et al (2020) Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packag Shelf Life Elsevier 23(March 2019):100439. https://doi.org/10.1016/j.fpsl.2019.100439

  91. Tang Y et al (2019) Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging. J Agric Food Chem 67(8):2227–2234. https://doi.org/10.1021/acs.jafc.8b06226

    CAS  CrossRef  Google Scholar 

  92. Tavassoli-Kafrani E, Goli SAH, Fathi M (2018) Encapsulation of orange essential oil using cross-linked electrospun gelatin nanofibers. Food Bioprocess Technol 11(2):427–434. https://doi.org/10.1007/s11947-017-2026-9

    CAS  CrossRef  Google Scholar 

  93. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14). https://doi.org/10.1088/0957-4484/17/14/R01

  94. Torres-Giner S et al (2010) Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J Food Sci 75(6). https://doi.org/10.1111/j.1750-3841.2010.01678.x

  95. Tran DN, Balkus KJ (2012) Enzyme immobilization via electrospinning. Top Catal 55(16–18):1057–1069. https://doi.org/10.1007/s11244-012-9901-4

    CAS  CrossRef  Google Scholar 

  96. Vafania B, Fathi M, Soleimanian-Zad S (2019) ‘Nanoencapsulation of thyme essential oil in chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to reduce nitrite in sausages. Food Bioprod Process Inst Chem Eng 116:240–248. https://doi.org/10.1016/j.fbp.2019.06.001

    CAS  CrossRef  Google Scholar 

  97. Wang ZG et al (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56(4):189–195. https://doi.org/10.1016/j.molcatb.2008.05.005

    CAS  CrossRef  Google Scholar 

  98. Warnke PH et al (2009) The battle against multi-resistant strains: renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J Cranio-Maxillofac Surg European Association for Cranio-Maxillofacial Surgery 37(7):392–397. https://doi.org/10.1016/j.jcms.2009.03.017

    CrossRef  Google Scholar 

  99. Wen P et al (2016) Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem Elsevier Ltd 196:996–1004. https://doi.org/10.1016/j.foodchem.2015.10.043

    CAS  CrossRef  Google Scholar 

  100. Wen P et al (2017) Electrospinning: a novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol Elsevier 70(May):56–68. https://doi.org/10.1016/j.tifs.2017.10.009

    CAS  CrossRef  Google Scholar 

  101. Wills KM et al (2016) 2016 reciprocal meat conference—muscle and lipid biology and biochemistry meat and muscle biology TM effects of pomegranate rind extract on ground beef color, p 2016

    Google Scholar 

  102. Wongsasulak S, Pathumban S, Yoovidhya T (2014) Effect of entrapped α-tocopherol on mucoadhesivity and evaluation of the release, degradation, and swelling characteristics of zein-chitosan composite electrospun fibers. J Food Eng Elsevier Ltd 120(1):110–117. https://doi.org/10.1016/j.jfoodeng.2013.07.028

  103. Yang Y et al (2006) Experimental investigation of the governing parameters in the electrospinning of polyethylene oxide solution. IEEE Trans Dielectr Electr Insul 13(3):580–584. https://doi.org/10.1109/TDEI.2006.1657971

    CAS  CrossRef  Google Scholar 

  104. Yang Z et al (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116(5):2658–2667. https://doi.org/10.1002/app

    CAS  CrossRef  Google Scholar 

  105. Yang Z et al (2019) Morphological, Mechanical and thermal properties of poly(lactic acid) (PLA)/cellulose nanofibrils (CNF) composites nanofiber for tissue engineering. J Wuhan Univ Technol Mater Sci Ed 34(1):207–215. https://doi.org/10.1007/s11595-019-2037-7

    CAS  CrossRef  Google Scholar 

  106. Yasakci V et al (2018) Hyaluronic acid-modified [19F]FDG-conjugated magnetite nanoparticles: in vitro bioaffinities and HPLC analyses in organs. J Radioanal Nucl Chem Springer International Publishing 318(3):1973–1989. https://doi.org/10.1007/s10967-018-6282-6

    CAS  CrossRef  Google Scholar 

  107. Yilmaz MT et al (2020) An alternative way to encapsulate probiotics within electrospun alginate nanofibers as monitored under simulated gastrointestinal conditions and in kefir. Carbohydrate Polymers Elsevier 244(February):116447. https://doi.org/10.1016/j.carbpol.2020.116447

  108. YukiKogyo Co.Ltd, D. integrity issue (2019) No TitleΕΛΕΝΗ. Αγαη 8(5):55

    Google Scholar 

  109. Zahmatkeshan M et al (2019) Polymer-based nanofibers: preparation, fabrication, and applications. Handbook of nanofibers. https://doi.org/10.1007/978-3-319-53655-2_29

  110. Zussman E (2011) Encapsulation of cells within electrospun fibers. Polym Adv Technol 22(3):366–371. https://doi.org/10.1002/pat.1812

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalan Oya San Keskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

San Keskin, N.O., Dinç, S.K. (2022). Electrospinning Techniques for Encapsulation. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_2

Download citation