. Colfen (2003) Precipitation of carbonates. Curr Opin Colloid Interface Sci 8:145–155. https://doi.org/10.1016/S1359-0294
Ahmad MU (2006) Nanotechnology: emerging interest, opportunities, and challenges, lipids in nanotechnology. AOCS Press. https://doi.org/10.1016/B978-0-9818936-7-9.50004-4
Almetwally AA et al (2017) Technology of nano-fibers: production techniques and properties—critical review. J Text Assoc 78(1):5–14
Google Scholar
Amiri N et al (2018) Optimization of Chitosan-Gelatin nanofibers production: investigating the effect of solution properties and working parameters on fibers diameter. Bionanoscience 8(3):778–789. https://doi.org/10.1007/s12668-018-0540-5
CrossRef
Google Scholar
Asbahani A El et al (2015) Essential oils: from extraction to encapsulation. Int J Pharm. Elsevier B.V. 483(1–2):220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069
Ataei S et al (2020) Essential oils-loaded electrospun biopolymers: a future perspective for active food packaging. Adv Polym Technol 2020:1–21. https://doi.org/10.1155/2020/9040535
CAS
CrossRef
Google Scholar
Aytac Z et al (2017) ‘Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem Elsevier Ltd. 233:117–124. https://doi.org/10.1016/j.foodchem.2017.04.095
CAS
CrossRef
Google Scholar
Aytac Z et al (2016) Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: release behavior and antioxidant activity of gallic acid. Mater Sci Eng C. Elsevier B.V. 63:231–239. https://doi.org/10.1016/j.msec.2016.02.063
Azaddin AF et al (2020) Entrapment of Volvariella volvacea spores in electrospun nanofibers. 1:15–20
Google Scholar
Bakkali F et al (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475. https://doi.org/10.1016/j.fct.2007.09.106
CAS
CrossRef
Google Scholar
Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 1(3):232–248. https://doi.org/10.3390/membranes1030232
CAS
CrossRef
Google Scholar
Balogh-Weiser D et al (2018) Electrospun nanofibers for entrapment of biomolecules. IntechOpen, pp 135–147. https://doi.org/10.1016/j.colsurfa.2011.12.014
Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004
CAS
CrossRef
Google Scholar
De Billerbeck VG (2007) Huiles essentielles et bactéries résistantes aux antibiotiques. Phytotherapie 5(5):249–253. https://doi.org/10.1007/s10298-007-0265-z
CAS
CrossRef
Google Scholar
Bui X-T et al (2019) In: Agarwal AK, Pandey A (eds) Water and wastewater treatment technologies energy, environment, and sustainability. http://www.springer.com/series/15901
Can Başer KH, Buchbauer G (2015) Handbook of essential oils: science, technology, and applications, 2nd edn. https://doi.org/10.1201/b19393
Casper CL et al (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578. https://doi.org/10.1021/ma0351975
CAS
CrossRef
Google Scholar
Celebioglu A et al (2018) Encapsulation of camphor in cyclodextrin inclusion complex nanofibers via polymer-free electrospinning: enhanced water solubility, high temperature stability, and slow release of camphor. J Mater Sci Springer US 53(7):5436–5449. https://doi.org/10.1007/s10853-017-1918-4
CAS
CrossRef
Google Scholar
Celebioglu A, Uyar T (2011) Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir 27(10):6218–6226. https://doi.org/10.1021/la1050223
CAS
CrossRef
Google Scholar
Celebioglu A, Uyar T (2011b) Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett Elsevier B.V. 65(14):2291–2294. https://doi.org/10.1016/j.matlet.2011.04.039
Cho DK et al (2009) A UDP-based protocol for mobile robot control over wireless internet. In: 2009 2nd international conference on robot communication and coordination, RoboComm 2009. https://doi.org/10.4108/icst.robocomm2009.6076
Chomachayi MD, Solouk A, Mirzadeh H (2016) Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer. Prog Biomater Springer Berlin Heidelberg 5(1):71–80. https://doi.org/10.1007/s40204-016-0046-6
Colín-Orozco J et al (2015) Properties of poly (ethylene oxide)/whey protein isolate nanofibers prepared by electrospinning. Food Biophys 10(2):134–144. https://doi.org/10.1007/s11483-014-9372-1
CrossRef
Google Scholar
Deitzel JM et al (2001) The effect of processing variables on the morphology of electrospun. Polymer 42:261–272
CAS
CrossRef
Google Scholar
Dias MI, Ferreira ICFR, Barreiro MF (2015) Microencapsulation of bioactives for food applications. Food Funct R Soc Chem 6(4):1035–1052. https://doi.org/10.1039/c4fo01175a
CAS
CrossRef
Google Scholar
Donsì F et al (2011) Encapsulation of bioactive compounds in nanoemulsion—based delivery systems. Procedia Food Sci Elsevier Srl 1:1666–1671. https://doi.org/10.1016/j.profoo.2011.09.246
CAS
CrossRef
Google Scholar
Duru Kamaci U, Peksel A (2020) Enhanced catalytic activity of immobilized phytase into polyvinyl alcohol-sodium alginate based electrospun nanofibers. Catal Lett Springer US (0123456789). https://doi.org/10.1007/s10562-020-03339-0
Esfahani MZ et al (2011) Polypropylene nanofibre. Nanofibers and nanotechnology research advances
Google Scholar
Espín JC, García-Conesa MT, Tomás-Barberán FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68(22–24):2986–3008. https://doi.org/10.1016/j.phytochem.2007.09.014
CAS
CrossRef
Google Scholar
Ezhilarasi PN et al (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647. https://doi.org/10.1007/s11947-012-0944-0
CAS
CrossRef
Google Scholar
El Fawal G (2019) Polymer nanofibers electrospinning: a review. Egypt J Chem. https://doi.org/10.21608/ejchem.2019.14837.1898
CrossRef
Google Scholar
Feng X et al (2019) Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release Elsevier 302(January):19–41. https://doi.org/10.1016/j.jconrel.2019.03.020
CAS
CrossRef
Google Scholar
Fennessey SF, Farris RJ (2004) Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 45(12):4217–4225. https://doi.org/10.1016/j.polymer.2004.04.001
CAS
CrossRef
Google Scholar
Fonseca LM et al (2020) Electrospun potato starch nanofibers for thyme essential oil encapsulation: antioxidant activity and thermal resistance. J Sci Food Agric 100(11):4263–4271. https://doi.org/10.1002/jsfa.10468
CAS
CrossRef
Google Scholar
Gao S et al (2020) Encapsulation of thiabendazole in hydroxypropyl-β-cyclodextrin nanofibers via polymer-free electrospinning and its characterization. Pest Manag Sci (February). https://doi.org/10.1002/ps.5885
García-Moreno PJ et al (2016) ‘Encapsulation of fish oil in nanofibers by emulsion electrospinning: physical characterization and oxidative stability. J Food Eng Elsevier Ltd 183:39–49. https://doi.org/10.1016/j.jfoodeng.2016.03.015
CAS
CrossRef
Google Scholar
Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1):1–19. https://doi.org/10.1063/1.3567097
CAS
CrossRef
Google Scholar
Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll Elsevier Ltd 51:227–240. https://doi.org/10.1016/j.foodhyd.2015.05.024
CAS
CrossRef
Google Scholar
Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703. https://doi.org/10.1002/anie.200604646
CAS
CrossRef
Google Scholar
Guillard V et al (2009) Food preservative content reduction by controlling sorbic acid release from a superficial coating. Innov Food Sci Emerg Technol Elsevier Ltd 10(1):108–115. https://doi.org/10.1016/j.ifset.2008.07.001
CAS
CrossRef
Google Scholar
Gómez-Mascaraque LG et al (2017) Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits. LWT Food Sci Technol 81:77–86. https://doi.org/10.1016/j.lwt.2017.03.041
CAS
CrossRef
Google Scholar
Göksen G et al (2020) Phytochemical-loaded electrospun nanofibers as novel active edible films: characterization and antibacterial efficiency in cheese slices. Food Control 112: 107133. https://doi.org/10.1016/j.foodcont.2020.107133
Hajhashemi V, Ghannadi A, Sharif B (2003) Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol 89(1):67–71. https://doi.org/10.1016/S0378-8741(03)00234-4
Heunis TDJ, Botes M, Dicks LMT (2010) Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers. Probiotics Antimicrob Proteins 2(1):46–51. https://doi.org/10.1007/s12602-009-9024-9
CAS
CrossRef
Google Scholar
Hu Q, Wu C, Zhang H (2020) Preparation and optimization of a biomimetic triple-layered vascular scaffold based on coaxial electrospinning. Appl Biochem Biotechnol 190(3):1106–1123. https://doi.org/10.1007/s12010-019-03147-2
CAS
CrossRef
Google Scholar
Jafari SM (ed) (2017) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press
Google Scholar
Jia H et al (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18(5):1027–1032. https://doi.org/10.1021/bp020042m
CAS
CrossRef
Google Scholar
Joye IJ, Davidov-Pardo G, McClements DJ (2014) Nanotechnology for increased micronutrient bioavailability. Trends Food Sci Technol Elsevier Ltd 40(2):168–182. https://doi.org/10.1016/j.tifs.2014.08.006
CAS
CrossRef
Google Scholar
Kamel BM et al (2016) Rheology and thermal conductivity of calcium grease containing multi-walled carbon nanotube. Fuller Nanotub Carbon Nanostructures Taylor & Francis 24(4):260–265. https://doi.org/10.1080/1536383X.2016.1143462
CAS
CrossRef
Google Scholar
Karim SA et al (2018) Mechanical properties and the characterization of polyacrylonitrile/carbon nanotube composite nanofiber. Arab J Sci Eng Springer, Berlin Heidelberg 43(9):4697–4702. https://doi.org/10.1007/s13369-018-3065-x
CAS
CrossRef
Google Scholar
Kim JS, Reneker DH (1999) Polybenzimidazole nanofiber produced by electrospinning. Polym Eng Sci 39(5):849–854. https://doi.org/10.1002/pen.11473
CAS
CrossRef
Google Scholar
Kour H et al (2015) Nanotechnology –new lifeline for food industry. Crit Rev Food Sci Nutr 8398:00–00. https://doi.org/10.1080/10408398.2013.802662
CrossRef
Google Scholar
Kriegel C, Kit KM, McClements DJ, Weiss J (2009) Influence of surfactant type and concentration on electrospinning of chitosan–poly(ethylene oxide) blend nanofibers. Food Biophys 4(3):213–228. https://doi.org/10.1007/s11483-009-9119-6
CrossRef
Google Scholar
Lassalle V, Ferreira ML (2007) PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 7(6):767–783. https://doi.org/10.1002/mabi.200700022
CAS
CrossRef
Google Scholar
Law JX et al (2017) Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regen Med Korean Tissue Engineering and Regenerative Medicine Society 14(6):699–718. https://doi.org/10.1007/s13770-017-0075-9
CrossRef
Google Scholar
Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938. https://doi.org/10.1021/nl049590f
CAS
CrossRef
Google Scholar
López-Rubio A et al (2009) Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromol 10(10):2823–2829. https://doi.org/10.1021/bm900660b
CAS
CrossRef
Google Scholar
Matsumoto H, Tanioka A, Materials P (2021) Encyclopedia of polymeric nanomaterials, pp 9–12. https://doi.org/10.1007/978-3-642-36199-9
Megelski S et al (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466. https://doi.org/10.1021/ma020444a
CAS
CrossRef
Google Scholar
Miletić A et al (2019) Encapsulation of fatty oils into electrospun nanofibers for cosmetic products with antioxidant activity. Appl Sci (Switzerland) 9(15). https://doi.org/10.3390/app9152955
Mirjalili M, Zohoori S (2016) Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostructure Chem Springer, Berlin Heidelberg 6(3):207–213. https://doi.org/10.1007/s40097-016-0189-y
CAS
CrossRef
Google Scholar
Mirmohammad Sadeghi SA et al (2020) Single nozzle electrospinning of encapsulated epoxy and mercaptan in PAN for self-healing application. Polymer Elsevier Ltd 186(November 2019):122007. https://doi.org/10.1016/j.polymer.2019.122007
Mo X, Chen Z, Weber HJ (2007) Electrospun nanofibers of collagen-chitosan and P(LLA-CL) for tissue engineering. Front Mater Sci Chin 1(1):20–23. https://doi.org/10.1007/s11706-007-0004-2
CrossRef
Google Scholar
Mojaveri SJ, Hosseini SF, Gharsallaoui A (2020) Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats. Carbohydr Polym Elsevier 241(February):116278. https://doi.org/10.1016/j.carbpol.2020.116278
Murthy KNC et al (2018) Nanoencapsulation : an advanced nanotechnological nanoencapsulation : an advanced nanotechnological approach to enhance the biological efficacy of curcumin. (October). https://doi.org/10.1021/bk-2018-1286.ch021
Nemati S et al (2019) Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg Springer Singapore 6(1). https://doi.org/10.1186/s40580-019-0209-y
Neo YP, Ray S, Perera CO (2018) Nanostructures for food applications, role of materials science in food bioengineering. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811448-3/00004-8
Paredes AJ et al (2016) Nanoencapsulation in the food industry: manufacture, applications and characterization. 1(1):56–79
Google Scholar
Perry NSL et al (2003) Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behav 75(3):651–659. https://doi.org/10.1016/S0091-3057(03)00108-4
CAS
CrossRef
Google Scholar
Pourhojat F et al (2017) Evaluation of poly ε-caprolactone electrospun nanofibers loaded with Hypericum perforatum extract as a wound dressing. Res Chem Intermed 297–320. https://doi.org/10.1007/s11164-016-2623-7
Pérez-Masiá R, Lagaron JM, Lopez-Rubio A (2015) Morphology and stability of edible lycopene-containing micro- and nanocapsules produced through electrospraying and spray drying. Food Bioprocess Technol 8(2):459–470. https://doi.org/10.1007/s11947-014-1422-7
CAS
CrossRef
Google Scholar
Ramakrishna S et al (2006) Electrospun nanofibers: solving global issues. Mater Today Elsevier Ltd 9(3):40–50. https://doi.org/10.1016/S1369-7021(06)71389-X
CAS
CrossRef
Google Scholar
Katrina A, Rieger Jessica D, Schiffman (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113:561–568. https://doi.org/10.1016/j.carbpol.2014.06.075
CAS
CrossRef
Google Scholar
Roslan NSA et al (2018) Nylon electrospun nanofibre water filtration media for wastewater treatment. Mater Res Express 5(10). https://doi.org/10.1088/2053-1591/aada94
Rostamabadi H et al (2020) Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci Technol Elsevier 100(March):190–209. https://doi.org/10.1016/j.tifs.2020.04.012
CAS
CrossRef
Google Scholar
Safdari F et al (2017) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose Springer, Netherlands 24(2):755–767. https://doi.org/10.1007/s10570-016-1137-1
CAS
CrossRef
Google Scholar
Sakai S et al (2010) Enhanced catalytic activity of lipase in situ encapsulated in electrospun polystyrene fibers by subsequent water supply. Catal Commun Elsevier B.V. 11(6):576–580. https://doi.org/10.1016/j.catcom.2009.12.023
Salalha W et al (2006) Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology 17(18):4675–4681. https://doi.org/10.1088/0957-4484/17/18/025
CAS
CrossRef
Google Scholar
San NO et al (2014) Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Adv 4(61):32249–32255. https://doi.org/10.1039/c4ra04250f
CAS
CrossRef
Google Scholar
San Keskin NO et al (2018) Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids Surf B Biointerfaces Elsevier B.V. 161:169–176. https://doi.org/10.1016/j.colsurfb.2017.10.047
Sarioglu OF et al (2017) Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water. Colloids Surf B Biointerfaces Elsevier B.V. 152:245–251. https://doi.org/10.1016/j.colsurfb.2017.01.034
Schiffman JD, Schauer CL (2007) One-step electrospinning of cross-linked Chitosan fibers. Biomacromol 8(9):2665–2667. https://doi.org/10.1021/bm7006983
CAS
CrossRef
Google Scholar
Shankar A, Seyam AFM, Hudson SM (2013) Electrospinning of soy protein fibers and their compatibility with synthetic polymers. J Text Appar Technol Manag 8(1)
Google Scholar
Shishir MRI et al (2018) ‘Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol Elsevier Ltd 78:34–60. https://doi.org/10.1016/j.tifs.2018.05.018
CAS
CrossRef
Google Scholar
Silva J et al (2003) Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol 89(2–3):277–283. https://doi.org/10.1016/j.jep.2003.09.007
CAS
CrossRef
Google Scholar
Siqueira NM et al (2015) Poly (lactic acid)/chitosan fiber mats: Investigation of effects of the support on lipase immobilization. Int J Biol Macromol. Elsevier B.V. 72:998–1004. https://doi.org/10.1016/j.ijbiomac.2014.08.048
Solaberrieta I et al (2020) Encapsulation of bioactive compounds from aloe vera agrowastes in electrospun poly (ethylene oxide) nanofibers. Polymers 12(6). https://doi.org/10.3390/polym12061323
Song J et al (2012) Enhanced catalytic activity of lipase encapsulated in PCL nanofibers. Langmuir 28(14):6157–6162. https://doi.org/10.1021/la300469s
CAS
CrossRef
Google Scholar
Sullivan ST et al (2014) Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocoll Elsevier Ltd 35:36–50. https://doi.org/10.1016/j.foodhyd.2013.07.023
CAS
CrossRef
Google Scholar
Surendhiran D et al (2020) Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packag Shelf Life Elsevier 23(March 2019):100439. https://doi.org/10.1016/j.fpsl.2019.100439
Tang Y et al (2019) Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging. J Agric Food Chem 67(8):2227–2234. https://doi.org/10.1021/acs.jafc.8b06226
CAS
CrossRef
Google Scholar
Tavassoli-Kafrani E, Goli SAH, Fathi M (2018) Encapsulation of orange essential oil using cross-linked electrospun gelatin nanofibers. Food Bioprocess Technol 11(2):427–434. https://doi.org/10.1007/s11947-017-2026-9
CAS
CrossRef
Google Scholar
Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14). https://doi.org/10.1088/0957-4484/17/14/R01
Torres-Giner S et al (2010) Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J Food Sci 75(6). https://doi.org/10.1111/j.1750-3841.2010.01678.x
Tran DN, Balkus KJ (2012) Enzyme immobilization via electrospinning. Top Catal 55(16–18):1057–1069. https://doi.org/10.1007/s11244-012-9901-4
CAS
CrossRef
Google Scholar
Vafania B, Fathi M, Soleimanian-Zad S (2019) ‘Nanoencapsulation of thyme essential oil in chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to reduce nitrite in sausages. Food Bioprod Process Inst Chem Eng 116:240–248. https://doi.org/10.1016/j.fbp.2019.06.001
CAS
CrossRef
Google Scholar
Wang ZG et al (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56(4):189–195. https://doi.org/10.1016/j.molcatb.2008.05.005
CAS
CrossRef
Google Scholar
Warnke PH et al (2009) The battle against multi-resistant strains: renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J Cranio-Maxillofac Surg European Association for Cranio-Maxillofacial Surgery 37(7):392–397. https://doi.org/10.1016/j.jcms.2009.03.017
CrossRef
Google Scholar
Wen P et al (2016) Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem Elsevier Ltd 196:996–1004. https://doi.org/10.1016/j.foodchem.2015.10.043
CAS
CrossRef
Google Scholar
Wen P et al (2017) Electrospinning: a novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol Elsevier 70(May):56–68. https://doi.org/10.1016/j.tifs.2017.10.009
CAS
CrossRef
Google Scholar
Wills KM et al (2016) 2016 reciprocal meat conference—muscle and lipid biology and biochemistry meat and muscle biology TM effects of pomegranate rind extract on ground beef color, p 2016
Google Scholar
Wongsasulak S, Pathumban S, Yoovidhya T (2014) Effect of entrapped α-tocopherol on mucoadhesivity and evaluation of the release, degradation, and swelling characteristics of zein-chitosan composite electrospun fibers. J Food Eng Elsevier Ltd 120(1):110–117. https://doi.org/10.1016/j.jfoodeng.2013.07.028
Yang Y et al (2006) Experimental investigation of the governing parameters in the electrospinning of polyethylene oxide solution. IEEE Trans Dielectr Electr Insul 13(3):580–584. https://doi.org/10.1109/TDEI.2006.1657971
CAS
CrossRef
Google Scholar
Yang Z et al (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116(5):2658–2667. https://doi.org/10.1002/app
CAS
CrossRef
Google Scholar
Yang Z et al (2019) Morphological, Mechanical and thermal properties of poly(lactic acid) (PLA)/cellulose nanofibrils (CNF) composites nanofiber for tissue engineering. J Wuhan Univ Technol Mater Sci Ed 34(1):207–215. https://doi.org/10.1007/s11595-019-2037-7
CAS
CrossRef
Google Scholar
Yasakci V et al (2018) Hyaluronic acid-modified [19F]FDG-conjugated magnetite nanoparticles: in vitro bioaffinities and HPLC analyses in organs. J Radioanal Nucl Chem Springer International Publishing 318(3):1973–1989. https://doi.org/10.1007/s10967-018-6282-6
CAS
CrossRef
Google Scholar
Yilmaz MT et al (2020) An alternative way to encapsulate probiotics within electrospun alginate nanofibers as monitored under simulated gastrointestinal conditions and in kefir. Carbohydrate Polymers Elsevier 244(February):116447. https://doi.org/10.1016/j.carbpol.2020.116447
YukiKogyo Co.Ltd, D. integrity issue (2019) No TitleΕΛΕΝΗ. Αγαη 8(5):55
Google Scholar
Zahmatkeshan M et al (2019) Polymer-based nanofibers: preparation, fabrication, and applications. Handbook of nanofibers. https://doi.org/10.1007/978-3-319-53655-2_29
Zussman E (2011) Encapsulation of cells within electrospun fibers. Polym Adv Technol 22(3):366–371. https://doi.org/10.1002/pat.1812
CAS
CrossRef
Google Scholar