Fanger GO (1974) Microencapsulation a brief history and introduction. In: Vandegaer JE (ed) Microencapsulation. Springer, Boston, MA, pp 1–20
Google Scholar
Green BK (1960) U.S. Reissue 24,899
Google Scholar
Green BK (1957) Schleicher L, U.S. 2800457
Google Scholar
Lin CY, Lin SJ, Yang YC, Wang DY, Cheng HF, Yeh MK (2015) Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases. Human Vaccines Immunotherapeutics 11(3):650–656
Google Scholar
Dragostin I, Dragostin O, Pelin AM, Grigore C, Zamfir CL (2017) The importance of polymers for encapsulation process and for enhanced cellular functions. J Macromol Sci Part A 54(7):489–493
CAS
Google Scholar
Abdelkader H, Hussain SA, Abdullah N, Kmaruddin S (2018) Review on micro-encapsulation with Chitosan for pharmaceuticals applications. MOJ Current Res Rev 1(2):77–84
Google Scholar
Sevault A, Kauko H, Bugge M, Banasiak K, Haugen N, Skreiberg O (2017) Phase change materials for thermal energy storage in low- and high-temperature applications: a state-of-the-art. Report, SINTEF Energy Research
Google Scholar
Mishra MK (2016) Overview of encapsulation and controlled release. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 3–22
Google Scholar
Theis C (2005) Microencapsulation, Encyclopedia of polymer science and technology. Wiley
Google Scholar
Oakley J (2016) Process selection criteria. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 23–33
Google Scholar
Sri Vajra Priya V, Roy HK, Jyothi N, Lakshmi Prasanthi N (2016) Polymers in Drug delivery technology, types of polymers and applications. Scholars Acad J Pharmacy 5(7):305–308
Google Scholar
Masters K (1985) Spray drying handbook-, 4th edn. Wiley & Sons Inc., Publishers. New York, Halsted Press, p 696
Google Scholar
Drusch S, Diekmann S (2016) Microencapsulation by spray drying. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 35–44
Google Scholar
Re MI (2006) Formulating drug delivery systems by spray drying. Drying Technol 24:433–446
CAS
Google Scholar
Rosenberg M, Kopelman IJ, Talmon Y (1990) Factors affecting retention in spray-drying microencapsulation of volatile materials. J Agric Food Chem 38:1288–1294
CAS
Google Scholar
Re MI (1998) Microencapsulation by spray drying. Drying Technol 16(6):1195–1236
CAS
Google Scholar
Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Linko P (2003) Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J Food Sci 68(7):2256–2262
CAS
Google Scholar
Popplewell LM, Hans KT, Henson L, Lavallee CT, Wolff EJ, Wright M (2013) Spray-dried compositions capable of retaining volatile compounds and methods of producing the same. US 20130022728
Google Scholar
Reineccius GA (2004) The spray drying of food flavors. Drying Technol 22(6):1289–1324
Google Scholar
Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam N, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 3–29
Google Scholar
Ermis D, Yuksel A (1999) Preparation of spray-dried microspheres of indomethacin and examination of the effects of coating on dissolution rates. J Microencapsul 16(3):315–324
CAS
Google Scholar
Singh A, Van den Mooter G (2016) Spray drying formulations of amorphous solid dispersions. Adv Drug Deliv Rev 100:27–50
CAS
Google Scholar
Pradhan R, Kim SY, Yong CS, Kim JO (2016) Preparation and characterization of spray-dried valsartan-loaded Eudragit® E PO solid dispersion microparticles. Asian J Pharm Sci 11(6):744–750
Google Scholar
Vidgren P, Vidgren M, Arppe J, Hakuli T, Laine EE, Paronen P (1992) In vitro evaluation of spray-dried mucoadhesive microspheres for nasal administration. Drug Dev Ind Pharm 18(5):581–597
CAS
Google Scholar
Acosta N, Sánchez E, Calderón L, Cordoba-Diaz M, Cordoba-Diaz D, Dom S, Heras A (2015) Physical stability studies of semi-solid formulations from natural compounds loaded with chitosan microspheres. Marine Drugs 13:5901–5919
CAS
Google Scholar
Arpagaus C, Schafroth N (2009) Laboratory scale spray drying of biodegradable polymers. Respir Drug Deliv Eur 2:269–274
Google Scholar
Wurster DE (1963) Granulating and coating process for uniform granules. US Patent No 3,089,824
Google Scholar
Wurster DE (1965) Apparatus for the encapsulation of discrete particles. US Patent No 3,196,827
Google Scholar
Wurster DE (1966) Particle coating apparatus. US Patent No 3,241,520
Google Scholar
Wurster DE (1990), Particle-coating methods. In: Lieberman HA (ed) Pharmaceutical dosage forms: tablets, vol 3, rev 90. Marcel Dekker, New York, pp 161–197
Google Scholar
Guignon B, Duquenoy A, Dumoulin ED (2002) Fluid bed encapsulation of particles: principles and practice. Drying Technol 20(2):419–447
CAS
Google Scholar
Jones DM, Rajabi-Siahboomi AR (2017) Fluid bed technology, process robustness, and scale-up. In: Rajabi-Siahboomi A (eds) Multiparticulate drug delivery. advances in delivery science and technology. Springer, New York, NY
Google Scholar
Frey CR (2016) Encapsulation via fluidized bed coating technology. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 35–44
Google Scholar
Upjohn WE (1885) Process of making pills. US Patent No. 312041
Google Scholar
Barrier P, Rousseau JY (1997) New fluid powder containing micro-encapsulated fish oil. French Patent No. 2758055A1
Google Scholar
Gautam A, Patrick M, Dagerath ML (2007) Nutrition bar or other food product and process of making. Worldwide Patent No. 2006058634A1
Google Scholar
Agrawal AM, Pandey P (2015) Scale up of pan coating process using quality by design principles. J Pharm Sci 104:3589–3611
CAS
Google Scholar
Porter S, Sackett G, Liu L (2009) Development, optimization, and scale-up of process parameters: pan coating. In: Qiu Y, Chen Y, Zhang GGZ, Liu L, Porter WR (eds) Developing solid oral dosage forms. Academic Press, San Diego, California, pp 761–805
Google Scholar
Ubbink J (2013) Flavour delivery systems. In: Kirk-Othmer (ed) Encyclopedia of chemical technology. Wiley and Sons, New York
Google Scholar
Leister MD, Geilen T, Geissler T (2012) Twin-screw extruders for pharmaceutical hot-melt extrusion: Technology, techniques and practices. In: Douroumis D (ed) Hot-melt extrusion: pharmaceutical applications, 1st edn. Wiley, Chichester, U.K., pp 23–42
Google Scholar
Patil H, Tiwari RV, Repka MA (2016) Encapsulation via hot-melt extrusion. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 213–233
Google Scholar
Lu M, Guo Z, Li Y, Pang H, Lin L, Liu X, Pan X, Wu C (2014) Application of hot melt extrusion for poorly water-soluble drugs: limitations. Adv Future Prospects 20(3):369–387
CAS
Google Scholar
Crowle MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, McGinity JW, Martin C (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33:909–926
Google Scholar
Rayleigh L (1878) On the stability of jets. Proc Lond Math Soc 10:4–13
Google Scholar
Heinzen C, Berger A, Marison IW (2004) Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation technology. Kluwer Academic Publishers, Dordrecht, pp 257–275
Google Scholar
Whelan M, Marison IW (2011) Microencapsulation using vibrating technology. J Microencapsul 28(8):669–688
Google Scholar
Gugerli R (2003) Polyelectrolyte-complex and covalent-complex microcapsules for encapsulation of mammalian cells: potential and limitations. Chemical Engineering, Lausanne, Ecole Polytechnique Federale de Lausanne
Google Scholar
Marison IW, Peters A, Heinzen C (2004) Liquid core capsules for applications in biotechnology. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation biotechnology. Kluwer Academic Publishers, Dordrecht, pp 185–204
Google Scholar
Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA (2020) Microfluidics for production of particles: mechanism, methodology, and applications. Small 16(9): 1904673
Google Scholar
Wang JT, Wang J, Han JJ (2011) Fabrication of advanced particles and particle-based materials assisted by droplet based microfluidics. Small 7(13):1728–1754
CAS
Google Scholar
Chen JM, Kuo MC, Liu CP (2011) Control of droplet generation in flow-focusing microfluidic device with a converging-diverging nozzle-shaped section. Japanese J Appl Phys 50(10R): 107301
Google Scholar
Bah MG, Bilal HM, Wang J (2019) Fabrication and application of complex microcapsules: a review. Soft Matter 16:570–590
Google Scholar
Zhao CX, Middelberg AP (2011) Two phase microfluidic flows. Chem Eng Sci 66:1394–1411
CAS
Google Scholar
Collins DJ, Nield A, deMello A, Qun Liu A, Ai Y (2015) The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15:3439–3459
CAS
Google Scholar
Kucuk I, Edirisinghe M (2014) Microfluidic preparation of polymer nanospheres. J Nanopart Res 16:2626
Google Scholar
Deng NN, Huck WTS (2017) Microfluidic formation of monodisperse coacervate organelles in liposomes. Angew Chem Int Ed 56(33):9736–9740
CAS
Google Scholar
Hou L, Ren Y, Liu W, Deng X, Chen X, Jiang T, Wu G, Jiang H (2020) Eccentric magnetic microcapsule for on-demand transportation, release, and evacuation in microfabrication fluidic networks. Colloids Surfaces A Physicochem Eng Aspects 599:124905
Google Scholar
Lei KF (2018) Introduction: the origin, current status, and future of microfluidics. microfluidics: fundamental, devices and applications. In: Song Y, Cheng D, Zhao L (eds) Microfluidics: fundamental, devices and applications. Wiley‐VCH Verlag GmbH & Co. KGaA, pp 1–18
Google Scholar
Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 4:242–246
Google Scholar
Chen CS, Breslauer DN, Luna JI (2008) Shrinky-dink microfluidics: 3D polystyrene chips. Lab Chip 8:622–624
CAS
Google Scholar
Wabuyele MB, Ford SM, Stryjewski W (2001) Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices. Electrophoresis 22:3939–3948
CAS
Google Scholar
Lemetter C, Meeuse F, Zuidam N (2009) Control of the morphology and the size of complex coacervate microcapsules during scale-up. AIChE J 55(6):1487–1496
CAS
Google Scholar
de Kruif CG, Weinbreck F, de Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9(5):340–349
Google Scholar
Timilsena YP, Akanbi TO, Khalid N, Adhikari B, Barrow CJ (2019) Complex coacervation: principles, mechanisms and applications in microencapsulation. Int J Biol Macromol 121:1276–1286
CAS
Google Scholar
Yan M (2016) Microencapsulation with coacervation. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 235–243
Google Scholar
Deveci SS, Basal G (2009) Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan. Colloid Polym Sci 287(12):1455–1467
CAS
Google Scholar
Yan C, Zhang W, Jin Y, Webber LA, Barrow C (2008) Vegetarian microcapsules. WO/2008085997
Google Scholar
Mendanha DV, Ortiz SEM, Favaro-Trindade CS, Mauri A, Monterrey-Quintero ES, Thomazini M (2009) Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Res Int 42:1099–1104
CAS
Google Scholar
Timilsena YP, Vongsvivut J, Tobin MJ, Adhikari R, Barrow C, Adhikari B (2019) Investigation of oil distribution in spray-dried chia seed oil microcapsules using synchrotron-FTIR microspectroscopy. Food Chem 275:457–466
CAS
Google Scholar
Pham BL, Wang B, Zisu B, Truong T, Adhikari B (2020) Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates. Food Hydrocolloids 107:105944
Google Scholar
Li M, Rouaud O, Poncelet D (2008) Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int J Pharm 363:26–39
CAS
Google Scholar
Amasya G, Badilli U, Aksu B, Tarimci N (2016) Quality by design case study 1: design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion—solvent evaporation method. Eur J Pharm Sci 84:92–102
CAS
Google Scholar
Lai MK, Tsiang RCC (2005) Microencapsulation of acetaminophen into poly(L-lactide) by three different emulsion solvent-evaporation methods. J Microencapsul 22(3):261–274
CAS
Google Scholar
Allain LR, Sorasaenee K, Xue Z (1997) Doped thin-film sensors via a sol-gel process for high-acidity determination. Anal Chem 69(15):3076–3080
CAS
Google Scholar
Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horizon 3:91–112
CAS
Google Scholar
Ciriminna R, Sciortino M, Alonzo G, Schrijver AD, Pagliaro M (2010) From molecules to systems: sol–gel microencapsulation in silica-based materials. Chem Rev 111(2):765–789
Google Scholar
Sol-Gel Scheme.svg [Online]. Available: https://commons.wikimedia.org/wiki/File:Sol-Gel_Scheme.svg. Accessed 11.08.2020
Magdassi S, Avnir D, Seri-levy A, Lapidot N, Rottman C, Sorek Y, Gans O (2001) Method for the preparation of oxide microcapsules loaded with functional molecules and the products obtained thereof. US 6303149
Google Scholar
Hitchen SM, Dean JR (1993) Properties of supercritical fluids. In: Dean JR (ed) Applications of supercritical fluids in industrial analysis. Springer, Dordrecht, pp 1–11
Google Scholar
Martín A, Fraile M, Rodríguez-Rojo S, José Cocero M (2016) Supercritical fluid technology for encapsulation. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 447–468
Google Scholar
Karim FT, Ghafoor K, Ferdosh S, Al-Juhaimi F, Ali E, Yunus KB, Hamed MH, Islam A, Asif M, Zaidul M, Sarker I (2017) Microencapsulation of fish oil using supercritical antisolvent process. J Food Drug Anal 25(3):654–666
CAS
Google Scholar
Suttiruengwong S, Rolker J, Smirnova I, Arlt W, Seiler M, Luederitz L, Perez de Diego Y, Jansens PJ (2006) Hyperbranched polymers as drug carriers: microencapsulation and release kinetics. Pharm Dev Technol 11(1):55–70
CAS
Google Scholar
Zabihi F, Yang M, Leng Y, Zhao Y (2015) PLGA–HPMC nanoparticles prepared by a modified supercritical antisolvent technique for the controlled release of insulin. J Supercrit Fluids 99:15–22
CAS
Google Scholar
Martın A, Varona S, Navarrete A, Cocero MJ (2010) Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. Open Chem Eng J 4(1):31–41
Google Scholar
Duan B (2015) Microencapsulation via interfacial polymerization. In: Mishra MK (eds) Handbook of encapsulation and controlled release. CRC Press, pp 297–305
Google Scholar
Jagtap SB, Patil VD, Suresh K, Ram F, Mohan MS, Rajput SS, Patil S, Shukla PG, Shanmuganathan K (2018) Functionalized carbon nanotube reinforced polymer nanocomposite microcapsules with enhanced stiffness. Colloids Surf, A 550:82–89
CAS
Google Scholar
Shukla PG (2018) Microcapsule modified with nanomaterial for controlled release of active agent and preparation process thereof. US 20180161746
Google Scholar
Rajagopalan N, Bhaskar C, Bankar VS, Pokharkar VB, Shukla PG, Regupathy A, Khilar KC (1995) Starch urea formaldehyde matrix encapsulation of solid agrochemicals: III. Studies and bio efficacy trials on double encapsulation. Pesticide Sci 45:123–131
Google Scholar
Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37(16): 2201−2205
Google Scholar
Jia Y, Li J (2019) Molecular assemblies of biomimetic microcapsules. Langmuir 35:8557–8564
CAS
Google Scholar
Ariga K, Yamauchi Y, Rydzek G, Ji Q, Yonamine Y, Wu KCW, Hill JP (2014) Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43(1):36–68
CAS
Google Scholar
He Q, Cui Y, Li J (2009) Molecular assembly and application of biomimetic microcapsules. Chem Soc Rev 38(8):2292–2303
CAS
Google Scholar
Matsusaki M, Ajiro H, Kida T, Serizawa T, Akashi M (2012) Layer-by-layer assembly through weak interactions and their biomedical applications. Adv Mater 24(4):454–474
CAS
Google Scholar
Shukla PG (2006) Microencapsulation of liquid active agents. In: Ghosh SK (eds) Functional coatings. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 153–186
Google Scholar
Li H, Cui Y, Wang H, Zhu Y, Wang B (2017) Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids Surf, A 518:181–187
CAS
Google Scholar
Higuchi T (1961) Rate of release of medicaments from ointments bases containing drugs in suspension. J Pharm Sci 50:874–875
CAS
Google Scholar
Weilbull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297
Google Scholar
Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA (1983) Mechanism of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35
CAS
Google Scholar
Ritger PL, Peppas NA (1987) A simple equation for describing of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36
CAS
Google Scholar
Kadam SL, Yadav P, Bhutkar S, Patil VD, Shukla PG, Shanmuganathan K (2019) Sustained release insect repellent microcapsules using modified cellulose nanofibers (mCNF) as pickering emulsifier. Colloids Surf A Physicochem Eng Aspects 582: 123883
Google Scholar
Dubey R, Shami TC, Bhasker Rao KU (2009) Microencapsulation technology and applications. Defence Sci J 59(1):82–95
CAS
Google Scholar
Rodrigues do Amaral PH, Andrade PL, Costa de Conto L (2019) Microencapsulation and its uses in food science and technology: a review. In: Microencapsulation—processes, technologies and industrial applications. https://doi.org/10.5772/intechopen.81997
Aditya N, Aditya S, Yang HJ, Kim HW, Park SO, Lee J, Ko S (2015) Curcumin and catechin co-loaded water-in-oil-in-water emulsion and its beverage application. J Funct Foods 15:35–43
CAS
Google Scholar
Zhang T, Luo Y, Wang M, Chen F, Liu J, Meng K, Zhao H (2020) Double-layered microcapsules significantly improve the long-term effectiveness of essential oil. Polymers (Basel) 12(8):1651
CAS
Google Scholar
Eratte D, McKnight S, Gengenbach TR, Dowling K, Barrow CJ, Adhikari BP (2015) Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. J Funct Foods 19:882–892
CAS
Google Scholar
Ho BT, Joyce DC, Bhandari BR (2011) Encapsulation of ethylene gas into α-cyclodextrin and characterisation of the inclusion complexes. Food Chem 127(2):572–580
CAS
Google Scholar
Wandrey C, Bartkowiak A, Harding SE (2010) Materials for encapsulation. In: Zuidam NJ, Nedović VA (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 31–100
Google Scholar
Timilsena YP, Haque MA, Adhikari BR (2020) Encapsulation in the food industry: a brief historical overview to recent developments. Food Nutr Sci 11:481–508
CAS
Google Scholar
Zhao H, Fei X, Cao L, Zhang B, Liu X (2019) The fabrication of fragrance microcapsules and their sustained and broken release behavior. Materials (Basel, Switzerland) 12(3): 393
Google Scholar
Tekin R, Bac N, Erdogmus H (2013) Microencapsulation of fragrance and natural volatile oils for application in cosmetics, and household cleaning products. Macromol Symposia 333:35–40
CAS
Google Scholar
Rodrigues Teixeira CS (2010) Microencapsulation of perfumes for application in textile industry. https://repositorio-aberto.up.pt/bitstream/10216/57560/1/000143206.pdf. Accessed 25 Aug 2020
Rodrigues SN, Martins IM, Fernandes IP, Gomes PB, Mata VG, Barreiro MF, Rodrigues AE (2009) Scentfashion®: microencapsulated perfumes for textile application. Chem Eng J 149:463–472
CAS
Google Scholar
Casanova F, Santos L (2015) Encapsulation of cosmetic active ingredients for topical application—a review. J Microencapsul 33(1):1–17
Google Scholar
Sansukcharearnpon A, Wanichwecharungruang S, Leepipatpaiboon N, Kerdcharoen T, Arayachukeat S (2010) High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. Int J Pharm 391(1–2):267–273
CAS
Google Scholar
Anchisi C, Meloni MC, Maccioni AM (2007) Chitosan beads loaded with essential oils in cosmetic formulations. Int J Cosmet Sci 29(6):485–485
Google Scholar
Sinclair RG (1973) Slow-release pesticide system. Polymers of lactic and glycolic acids as ecologically beneficial, cost-effective encapsulating materials. Environ Sci Technol 7(10): 955–956
Google Scholar
Scher HB, Rodson M, Lee KS (1998) Microencapsulation of pesticides by interfacial polymerization utilizing isocyanate or aminoplast chemistry. Pestic Sci 54(4):394–400
CAS
Google Scholar
Rajagopalan N, Bhaskar C, Shukla PG, Amarnath N (1994) Novel controlled-release (CR) agrochemical formulations: development and evaluations. Res Develop Controlled Release Formul Pesticides, Vienna, Austria I:91–110
Google Scholar
Bhaskar C, Shukla PG, Rajagopalan N (2000) An improved process for the preparation of micorcapsular formulations of agrochemicals. Indian Patent IN184975
Google Scholar
Mihou AP, Michaelakis A, Krokos FD, Majomenos BE, Couladouros EA (2007) Prolonged slow release of (Z)-11-hexadecenyl acetate employing polyurea microcapsules. J Appl Entomol 131(2):128–133
CAS
Google Scholar
Zengliang C, Yuling F, Zhongning Z (2007) Synthesis and assessment of attractiveness and mating disruption efficacy of sex pheromone microcapsules for the diamondback moth, Plutella xylostella (L). Chin Sci Bull 57(10):1365–1371
Google Scholar
Gregg PC, Del Socorro AP, Landolt PJ (2018) Advances in attract-and-kill for agricultural pests: beyond pheromones. Annu Rev Entomol 63(1):453–470
CAS
Google Scholar
Humbert P, Vemmer M, Mävers F, Schumann M, Vidal S, Patel AV (2018) Development of an attract-and-kill co-formulation containing Saccharomyces cerevisiae and neem extract attractive towards wireworms. Pest Manag Sci 74(7):1575–1585
CAS
Google Scholar
Humbert P, Vemmer M, Giampà M, Bednarz H, Niehaus K, Patel AV (2017) Co-encapsulation of amyloglucosidase with starch and Saccharomyces cerevisiae as basis for a long-lasting CO2 release. World J Microbiol Biotechnol 33(4):71
Google Scholar
White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797
CAS
Google Scholar
Kanellopoulos A, Giannaros P, Palmer D, Kerr A, Al-Tabbaa A (2017) Polymeric microcapsules with switchable mechanical properties for self-healing concrete: synthesis, characterization and proof of concept. Smart Mater Struct 26: 045025
Google Scholar
Zhu Y, Cao K, Chen M, Wu L (2019) Synthesis of UV-responsive self-healing microcapsules and their potential application in aerospace coatings. ACS Appl Mater Interfaces 11(36):33314–33322
CAS
Google Scholar
Feio R, Ferreira O, Bordado JC, Marques AC, Silva ER (2015) Microencapsulation of biocides: a new strategy for biofouling control. https://fenix.tecnico.ulisboa.pt/downloadFile/1126295043835061/Extended%20Abstract.pdf. Accessed 26 Aug 2020
Kartal GE, Sarıışık AM (2020) Providing antifouling properties to fishing nets with encapsulated econea. J Ind Text. https://doi.org/10.1177/1528083720920568
CrossRef
Google Scholar
Shukla PG, Sivaram S (2006) Polyurethane microcapsules containing biocide and process for the preparation thereof. US 2006/0251688 A1
Google Scholar
Joshi M (2013) Role of Eudragit in targeted drug delivery. Int J Current Pharmaceutical Res 5(2):58–62
Google Scholar
Blanchette J (2016) Cell encapsulation. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 917–931
Google Scholar
Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Guisan JM (eds) Immobilization of enzymes and cells. Methods in biotechnology™, vol 22. Humana Press, pp 15–30
Google Scholar
Genta I, Perugini P, Pavanetto F, Maculotti K, Modena T, Casado B, Lupi A, Iadarola P, Conti B (2001) Enzyme loaded biodegradable microspheres in vitro: ex vivo evaluation. J Control Release 77(3):287–295
CAS
Google Scholar
Borodina T, Markvicheva E, Kunizhev S, Möhwald H, Sukhorukov GB, Kreft O (2007) Controlled release of DNA from self-degrading microcapsules. Macromol Rapid Commun 28:1894–1899
CAS
Google Scholar
Khattab TA, Fouda MMG, Abdelrahman MS, Othman SI, Bin-Jumah M, Alqaraawi MA, Al Fassam H, Allam AA (2019) Co-encapsulation of enzyme and tricyanofuran hydrazone into alginate microcapsules incorporated onto cotton fabric as a biosensor for colorimetric recognition of urea. React Funct Polym 142:199–206
CAS
Google Scholar
Tong W, Gao C (2016) Multilayer microcapsules with tailored structures and properties as delivery carriers for drugs and growth factors. In: Gao C (eds) Polymeric biomaterials for tissue regeneration. Springer, Singapore
Google Scholar
Fontana F, Ferreira MPA, Correia A, Hirvonen J, Santos HA (2016) Microfluidics as a cutting-edge technique for drug delivery applications. J Drug Delivery Sci Technol 34:76–87
CAS
Google Scholar