Skip to main content

Containers for Encapsulation of Aroma/Flavour for Food Applications

  • 167 Accesses

Part of the Composites Science and Technology book series (CST)

Abstract

Nowadays, the food market’s tendency shows the consumers’ preference towards tasty, healthy and visually provocative food products and able to enhance sensorial perception. The addition of aromas and flavours is a usual practice in the food industry in order to intensify their sensorial characteristics. In addition, the healthy food needed promotes the inclusion of nutritional supplements in different foods. However, some nutraceuticals have bad flavour and odour, being a significant problem for consumption. A common issue of aromas and flavours is the loss of many of their properties after processing. Enca https://dictionary.cambridge.org/dictionary/english/stabilizepsulation is a tested solution not only for enhancing but also for masking them. In this chapter, the importance of encapsulating aromas and flavour to resist their processing and the release of flavours in the mouth will be discussed. Different encapsulation techniques commonly practiced in micro and nano scale, such as spray drying and electrohydrodynamic methodologies will be exposed, remarking the advantages of electrospinning and electrospray techniques regarding the cold encapsulation of volatile compounds. Additionally, the cyclodextrins usage par excellence as an encapsulating matrix and its benefits (even when encapsulation requires strong mechanical processing such as extrusion) will be discussed. Finally, the market trends in the use of encapsulation of aromas and flavours will be overviewed. Clearly, encapsulation at micro and nano scale brought a wide range of improvements to the food field, but there is still much more to be discovered. Therefore, this chapter attempts to enrich the knowledge of this subject from the most recent advances found in the literature.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_16
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Gupta P (2020) Food addiction and intermittent fasting. J Addict Res 4(1). https://doi.org/10.33140/jar.04.01.03

  2. Simat T (2017) Panel training on odour and aroma perception for sensory analysis. DLG Expert Rep 1–24 [Online]. https://www.dlg.org/en/food/topics/dlg-expert-reports/sensory-technology/dlg-expert-report-1-2017/. Accessed 13 Aug 2020

  3. Shi Y, Li X, Huang A (2020) Multivariate analysis approach for assessing coated dry-cured ham flavor quality during long-term storage. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04579-z

    CrossRef  Google Scholar 

  4. Kang J, Valerio L (2020) Investigating DNA adduct formation by flavor chemicals and tobacco by products in electronic nicotine delivery system (ENDS) using in silico approaches. Toxicol Appl Pharmacol 398:115026. https://doi.org/10.1016/j.taap.2020.115026

  5. Aheto JH et al (2020) Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat. Anal Bioanal Chem 412(5):1169–1179. https://doi.org/10.1007/s00216-019-02345-5

    CAS  CrossRef  Google Scholar 

  6. Liu D et al (2020) Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS). Meat Sci 168. https://doi.org/10.1016/j.meatsci.2020.108178

  7. Ogrodowska D et al (2020) Pumpkin oil addition and encapsulation process as methods to improve oxidative stability of fish oil. Lwt 124. https://doi.org/10.1016/j.lwt.2020.109142

  8. Assadpour E, Jafari SM (2019) Advances in spray-drying encapsulation of food bioactive ingredients: from microcapsules to nanocapsules. Annu Rev Food Sci Technol 10(1):103–131. https://doi.org/10.1146/annurev-food-032818-121641

    CAS  CrossRef  Google Scholar 

  9. Liberto E et al (2020) Chapter 1 Headspace sampling: an ‘evergreen’ method in constant evolution to characterize food flavors through their volatile fraction. In: Advanced gas chromatography in food analysis. The Royal Society of Chemistry, pp 1–37

    Google Scholar 

  10. Buettner A, Schieberle P (2000) Influence of mastication on the concentrations of aroma volatiles—some aspects of flavour release and flavour perception. Food Chem 71(3):347–354. https://doi.org/10.1016/S0308-8146(00)00199-0

    CAS  CrossRef  Google Scholar 

  11. Letelier L et al (2020) Southern species from the biodiversity hotspot of central chile: a source of color, aroma, and metabolites for global agriculture and food industry in a scenario of climate change. Front Plant Sci 11:1–16. https://doi.org/10.3389/fpls.2020.01002

    CrossRef  Google Scholar 

  12. Thomas CF et al (2020) Design of in vitro model to study oral aroma release: experimental study and numeric simulation of heat transfer in a foamed dairy matrix. J Food Eng 278. https://doi.org/10.1016/j.jfoodeng.2020.109940

  13. Sáenz-Navajas MP et al (2020) Effect of aroma perception on taste and mouthfeel dimensions of red wines: correlation of sensory and chemical measurements. Food Res Int 131. https://doi.org/10.1016/j.foodres.2019.108945.

  14. Bertelsen AS et al (2020) Individual differences in sweetness ratings and cross-modal aroma-taste interactions. Foods 9(2):9–15. https://doi.org/10.3390/foods9020146

    CAS  CrossRef  Google Scholar 

  15. Du W et al (2020) Key aroma compounds in Chinese fried food of youtiao. Flavour Fragr J 35(1):88–98. https://doi.org/10.1002/ffj.3539

    CAS  CrossRef  Google Scholar 

  16. Spackman C, Lahne J (2019) Sensory labor: considering the work of taste in the food system. Food Cult Soc 22(2):142–151. https://doi.org/10.1080/15528014.2019.1573039

  17. McKay M et al (2020) Investigation of olfactory interactions of low levels of five off-flavour causing compounds in a red wine matrix. Food Res Int 128:108878. https://doi.org/10.1016/j.foodres.2019.108878

  18. Wang S, Chen H, Sun B (2020) Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem 315(2019):126158. https://doi.org/10.1016/j.foodchem.2019.126158

  19. Lotfabadi SV, Mortazavi SA, Yeganehzad S (2020) Study on the release and sensory perception of encapsulated d-limonene flavor in crystal rock candy using the time–intensity analysis and HS-GC/MS spectrometry. Food Sci Nutr 8(2):933–941. https://doi.org/10.1002/fsn3.1372

    CAS  CrossRef  Google Scholar 

  20. Chambers E (2019) Analysis of sensory properties in foods: a special issue. 8(8)

    Google Scholar 

  21. Margeta P et al (2019) Importance of sensory evaluation in assessment of egg quality. Poljoprivreda 25(1):56–63. https://doi.org/10.18047/poljo.25.1.8

    CrossRef  Google Scholar 

  22. Natrella G et al (2020) Short communication: sensory characteristics and volatile organic compound profile of high-moisture mozzarella made by traditional and direct acidification technology. J Dairy Sci 103(3):2089–2097. https://doi.org/10.3168/jds.2019-17059

    CAS  CrossRef  Google Scholar 

  23. Barbará JA et al (2020) Volatile profile and aroma potential of tropical syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. Food Chem 308:125552. https://doi.org/10.1016/j.foodchem.2019.125552

  24. Tranchida PQ (2019) Advanced gas chromatography in food analysis. Royal Society of Chemistry

    Google Scholar 

  25. Nollet L (2019) Food aroma evolution: during food processing, cooking and aging, 1st edn. CRC Press

    Google Scholar 

  26. Nada A et al (2019) Fabrication and bioevaluation of a medicated electrospun mat based on azido-cellulose acetate via click chemistry. Cellulose 26(18):9721–9736. https://doi.org/10.1007/s10570-019-02739-9

    CAS  CrossRef  Google Scholar 

  27. Mcclements DJ (2015) Nanoparticle- and microparticle-based delivery systems. CRC Press, pp 1–550

    Google Scholar 

  28. Rezaei A, Fathi M, Jafari SM (2019) Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll 88:146–162. https://doi.org/10.1016/j.foodhyd.2018.10.003

    CAS  CrossRef  Google Scholar 

  29. Dinu V et al (2019) Mucin immobilization in calcium alginate: a possible mucus mimetic tool for evaluating mucoadhesion and retention of flavour. Int J Biol Macromol 138:831–836. https://doi.org/10.1016/j.ijbiomac.2019.07.148

    CAS  CrossRef  Google Scholar 

  30. Selmer I et al (2019) Encapsulation of fish oil in protein aerogel micro-particles. J Food Eng 260:1–11. https://doi.org/10.1016/j.jfoodeng.2019.04.016

    CAS  CrossRef  Google Scholar 

  31. Shilomboleni H, De Plaen R (2019) Scaling up research-for-development innovations in food and agricultural systems. Dev Pract 29(6):723–734. https://doi.org/10.1080/09614524.2019.1590531

    CrossRef  Google Scholar 

  32. Jamshidi A et al (2020) Advantages of techniques to fortify food products with the benefits of fish oil. Food Res Int 137:109353. https://doi.org/10.1016/j.foodres.2020.109353

  33. Walia N et al (2019) Methods for nanoemulsion and nanoencapsulation of food bioactives. Environ Chem Lett 17(4):1471–1483. https://doi.org/10.1007/s10311-019-00886-w

    CAS  CrossRef  Google Scholar 

  34. Ribba L et al (2014) Electrospun nanofibrous mats: from vascular repair to osteointegration. J Biomed Nanotechnol 10:3508–3535. https://doi.org/10/1166/jbn.2014.2046

  35. Saifullah M et al (2019) Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends Food Sci Technol 86:230–251. https://doi.org/10.1016/j.tifs.2019.02.030

    CAS  CrossRef  Google Scholar 

  36. Zhang R et al (2020) Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: characterization, stability and bioaccessibility, vol 123. Elsevier Ltd

    Google Scholar 

  37. Grasso S (2020) Extruded snacks from industrial by-products: a review. Trends Food Sci Technol 99:284–294. https://doi.org/10.1016/j.tifs.2020.03.012

    CAS  CrossRef  Google Scholar 

  38. Jedlińska A et al (2019) Industry-scale spray-drying microencapsulation of orange aroma. Int Agrophys 33(3):397–405. https://doi.org/10.31545/intagr/110857

    CAS  CrossRef  Google Scholar 

  39. Simsek T et al (2019) Combined computational and experimental study on the inclusion complexes of β-cyclodextrin with selected food phenolic compounds. Struct Chem 30(4):1395–1406. https://doi.org/10.1007/s11224-019-01347-4

    CAS  CrossRef  Google Scholar 

  40. Da Rosa CG et al (2014) Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). LWT Food Sci Technol 58(2):527–533. https://doi.org/10.1016/j.lwt.2014.03.042

    CAS  CrossRef  Google Scholar 

  41. Chang D et al (2019) Ascorbic acid encapsulation in a glassy carbohydrate matrix via hot melt extrusion: preparation and characterization. Food Sci Technol 39(3):660–666. https://doi.org/10.1590/fst.02918

    CrossRef  Google Scholar 

  42. Kuck LS, Noreña CPZ (2019) Application of gum Arabic, β-cyclodextrin, and hydroxypropyl-β-cyclodextrin to microencapsulation by molecular inclusion of grape skin extract (Vitis labrusca var. Isabel). J Food Process Preserv 43(2):1–7. https://doi.org/10.1111/jfpp.13874

    CAS  CrossRef  Google Scholar 

  43. Dasgupta N, Ranjan S, Gandhi M (2019) Nanoemulsions in food: market demand. Environ Chem Lett. https://doi.org/10.1007/s10311-019008562

    CrossRef  Google Scholar 

  44. Hashidzume A, Yamaguchi H, Harada A (2019) Cyclodextrin-based rotaxanes: from rotaxanes to polyrotaxanes and further to functional materials. Eur J Org Chem 2019(21):3344–3357. https://doi.org/10.1002/ejoc.201900090

    CAS  CrossRef  Google Scholar 

  45. Tamaru S et al (2019) High correlation between octanol-air partition coefficient and aroma release rate from O/W emulsions under non-equilibrium. Food Res Int 116:883–887. https://doi.org/10.1016/j.foodres.2018.09.024

    CAS  CrossRef  Google Scholar 

  46. Sonawane SH, Bhanvase BA, Sivakumar M (2020) Encapsulation of active molecules and their delivery system. Elsevier Inc., pp 1–3782020. https://doi.org/10.1016/C2018-0-05369-4

  47. Dutta S et al (2020) Nanoencapsulation of green tea polyphenols. In: Nanoengineering in the beverage industry, vol 20. Elsevier Inc., pp 229–261. https://doi.org/10.1016/b978-0-12-816677-2.00008-9

  48. Popović DA et al (2019) Encapsulation technologies for polyphenol-loaded microparticles in food industry. In: Green food processing technique. Elsevier Inc., pp 335–367. https://doi.org/10.1016/b978-0-12-815353-6.00012-4

  49. Mujica-Alvares J, Barra PA (2020) Encapsulation of vitamins A and E as spray-dried. Molecules 25(6):1357

    CrossRef  Google Scholar 

  50. Mohammadi M et al (2020) Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci Technol 101:73–88. https://doi.org/10.1016/j.tifs.2020.05.004

    CAS  CrossRef  Google Scholar 

  51. Estevinho BN (2020) Nanocarriers loaded with nutraceuticals and bioactive ingredients (vitamins and minerals). In: Nanotechnology in the beverage industry. Elsevier Inc., pp 373–412. https://doi.org/10.1016/b978-0-12-819941-1.00013-4

  52. Cravotto G, Binello A (2019) Effect of emerging processing methods on the food quality. Eff Emerg Process Methods Food Qual 147–161. https://doi.org/10.1007/978-3-030-18191-8

  53. Dordoni R et al (2019) Enrichment of whole wheat cocoa biscuits with encapsulated grape skin extract. Int J Food Sci 2019:9161840. https://doi.org/10.1155/2019/9161840

    CAS  CrossRef  Google Scholar 

  54. Hinderink EBA et al (2019) Dynamic flavor release from chewing gum: mechanisms of release. Food Res Int 116:717–723. https://doi.org/10.1016/j.foodres.2018.09.002

    CAS  CrossRef  Google Scholar 

  55. Cheng J et al (2020) Development and characterization of Al-based amorphous coating. Jom 72(2):745–753. https://doi.org/10.1007/s11837-019-03966-y

    CAS  CrossRef  Google Scholar 

  56. Li R et al (2019) Glass transition, structural relaxation and stability of spray-dried amorphous food solids: a review. Dry Technol 37(3):287–300. https://doi.org/10.1080/07373937.2018.1459680

    CrossRef  Google Scholar 

  57. Aree T (2019) Understanding structures and thermodynamics of β-cyclodextrin encapsulation of chlorogenic, caffeic and quinic acids: implications for enriching antioxidant capacity and masking bitterness in coffee. Food Chem 293:550–560. https://doi.org/10.1016/j.foodchem.2019.04.084

    CAS  CrossRef  Google Scholar 

  58. Tian B et al (2020) The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: a review. Polym Int. https://doi.org/10.1002/pi.5992

    CrossRef  Google Scholar 

  59. Crini G et al (2018) Fundamentals and applications of cyclodextrins. In: Fourmentin S, Crini G, Lichtfouse E (eds) Cyclodextrin fundamentals, reactivity and analysis. Environmental chemistry for a sustainable world, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-76159-6_1

  60. Ahuja K et al (2018) Encapsulated flavors and fragrances market size by product (flavor blends, fragrance blends, essential oils & natural extracts, aroma chemicals), by technology (physical process [atomization {spray drying, spray chilling, spray disk}, extrusion, fluid bed technique], chemical & physicochemical process), by encapsulation process (micro encapsulation, nano encapsulation, hybrid technology, macro encapsulation), by end-use (food & beverages [beverage mixes, pressed tablets, chewing gum, bake mixes], toiletries & cleaners) industry analysis report, regional outlook, growth potential, price trend, competitive market share & forecast, 2018–2024 [Online]. https://www.gminsights.com/methodology/detail/encapsulated-flavors-and-fragrances-market. Accessed 24 June 2020

  61. Zhang YM, Liu YH, Liu Y (2020) Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv Mater 32(3):1–19. https://doi.org/10.1002/adma.201806158

    CAS  CrossRef  Google Scholar 

  62. Pinto Heckert Bastos L et al (2020) Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: Structural characterization and simulated gastrointestinal conditions. Food Chem 126345. https://doi.org/10.1016/j.foodchem.2020.126345

  63. Simionato I et al (2019) Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food Chem Toxicol 132:110647. https://doi.org/10.1016/j.fct.2019.110647

  64. Kringel DH et al (2020) Free and encapsulated orange essential oil into a β-cyclodextrin inclusion complex and zein to delay fungal spoilage in cakes. J Food Process Preserv 44(5):1–10. https://doi.org/10.1111/jfpp.14411

    CAS  CrossRef  Google Scholar 

  65. Rodríguez-López MI et al (2019) Thorough characterization and stability of HP-β-cyclodextrin thymol inclusion complexes prepared by microwave technology: a required approach to a successful application in food industry. J Sci Food Agric 99(3):1322–1333. https://doi.org/10.1002/jsfa.9307

    CAS  CrossRef  Google Scholar 

  66. Kfoury M et al (2019) Encapsulation in cyclodextrins to widen the applications of essential oils. Environ Chem Lett 17(1):129–143. https://doi.org/10.1007/s10311-018-0783-y

    CAS  CrossRef  Google Scholar 

  67. Li J et al (2019) Protective effect of β-cyclodextrin on stability of nisin and corresponding interactions involved. Carbohydr Polym 223:115115. https://doi.org/10.1016/j.carbpol.2019.115115

  68. Costa MDS et al (2019) Comparative analysis of the antibacterial and drug-modulatory effect of D-limonene alone and complexed with β-cyclodextrin. Eur J Pharm Sci 128:158–161. https://doi.org/10.1016/j.ejps.2018.11.036

    CAS  CrossRef  Google Scholar 

  69. Celebioglu A et al (2019) One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr Polym 207:471–479. https://doi.org/10.1016/j.carbpol.2018.12.008

    CAS  CrossRef  Google Scholar 

  70. Cesari A et al (2020) Improvement of peptide affinity and stability by complexing to cyclodextrin-grafted ammonium chitosan. Polymers (Basel) 12(2):1–18. https://doi.org/10.3390/polym12020474

    CAS  CrossRef  Google Scholar 

  71. Li Y et al (2020) Ferulic acid-β-cyclodextrin inclusion complexes: application on the preservation of hairtail (Trichiurus lepturus). Int J Food Prop 23(1):282–296. https://doi.org/10.1080/10942912.2020.1722161

    CAS  CrossRef  Google Scholar 

  72. Zhong Y et al (2020) Inclusion complexes of tea polyphenols with HP-β-cyclodextrin: preparation, characterization, molecular docking, and antioxidant activity. J Food Sci 85(4):1105–1113. https://doi.org/10.1111/1750-3841.15083

    CAS  CrossRef  Google Scholar 

  73. Ramos ÓL et al (2019) Advances in processing technologies for bio-based nanosystems in food, 1st edn. CRC Press, pp 1–396. https://doi.org/10/1201/9781315177328

  74. Adhikari L et al (2019) Binary complexes of glimepiride with β-cyclodextrin for improved solubility and drug delivery. Indian Drugs 56(3):54–60

    CrossRef  Google Scholar 

  75. Banjare MK et al (2020) Inclusion complexation of novel synthesis amino acid based ionic liquids with β-cyclodextrin. J Mol Liq 299:112204. https://doi.org/10.1016/j.molliq.2019.112204

  76. Sousa S et al (2019) Poly(lactic acid)/Cellulose films produced from composite spheres prepared by emulsion-solvent evaporation method. Polymers (Basel) 11(1):1–19. https://doi.org/10.3390/polym11010066

    CAS  CrossRef  Google Scholar 

  77. Wang H et al (2019) Inclusion complexes of lycopene and β-cyclodextrin: preparation, characterization, stability and antioxidant activity. Antioxidants 8(8). https://doi.org/10.3390/antiox8080314

  78. Oliva E et al (2020) New lipidyl-cyclodextrins obtained by ring opening of methyl oleate epoxide using ball milling. Biomolecules 10(2):1–18. https://doi.org/10.3390/biom10020339

    CAS  CrossRef  Google Scholar 

  79. Cui L et al (2020) Combining solid dispersion-based spray drying with cyclodextrin to improve the functionality and mitigate the beany odor of pea protein isolate. Carbohydr Polym 245:116546. https://doi.org/10.1016/j.carbpol.2020.116546

  80. Fonseca L et al (2019) Characterization of inclusion complex of croton zehntneri essential oil and β-cyclodextrin prepared by spray drying and freeze drying. Rev Virtual Quim 11(2):529–542. https://doi.org/10.21577/1984-6835.20190040

    CAS  CrossRef  Google Scholar 

  81. Vilela A (2018) Introductory chapter: generation of aromas and flavours. Gener Aromas Flavours 1–8. https://doi.org/10.5772/intechopen.81630

  82. Sabisch M (2020) The complex regulatory landscape for natural flavor ingredients [Online]. https://www.sigmaaldrich.com/technical-documents/articles/white-papers/flavors-and-fragrances/natural-flavor-ingredients-regulations.html. Accessed 18 Aug 2020

  83. Day CPF et al (2020) Quantifying the hygroscopic properties of cyclodextrin containing aerosol for drug delivery to the lungs. Phys Chem Chem Phys 20(22):11327–21133. https://doi.org/10.1039/d0cp01385d

    CAS  CrossRef  Google Scholar 

  84. Benson G (2019) Development of quantification methods and evaluation of drugs photostability in the presence of cyclodextrin polymer and human serum albumin protein. PhD dissertation, Leicester School of Pharmacy, De Montfort Univ., Leicester

    Google Scholar 

  85. Das S et al (2020) Microwave-assisted β-cyclodextrin/chrysin inclusion complexation: an economical and green strategy for enhanced hemocompatibility and chemosensitivity in vitro. J Mol Liq 310:113257. https://doi.org/10.1016/j.molliq.2020.113257

  86. Lopez-Polo J et al (2020) Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: food application. Carbohydr Polym 231:115702. https://doi.org/10.1016/j.carbpol.2019.115702

  87. Selvamuthukumaran M (2019) Handbook on spray drying applications for food industries, 1st edn. CRC Press, pp 1–362. https://doi.org/10.1201/9780429055133

  88. Dhakal SP, He J (2020) Microencapsulation of vitamins in food applications to prevent losses in processing and storage: a review. Food Res Int 137:109326. https://doi.org/10.1016/j.foodres.2020.109326

  89. Grand D, Goll H (2020) Microencapsulation process and product. US 10561621 B2

    Google Scholar 

  90. Medeiros AKOC et al (2019) Nanoencapsulation improved water solubility and color stability of carotenoids extracted from Cantaloupe melon (Cucumis melo L.), vol 270. https://doi.org/10.1016/j.foodchem.2018.07.099

  91. Suyanto A et al (2019) Nano-emulsion and nano-encapsulation of fruit flavor: review. IOP Conf Ser Earth Environ Sci 292(1). https://doi.org/10.1088/1755-1315/292/1/012025

  92. Ozkan G et al (2019) A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chem 272:494–506. https://doi.org/10.1016/j.foodchem.2018.07.205

    CAS  CrossRef  Google Scholar 

  93. Rodrigues do Amaral P, Lopes Andrade P, Costa de Conto L (2019) Microencapsulation and its uses in food science and technology: a review. Microencapsul Process Technol Ind Appl 1–18. https://doi.org/10.5772/intechopen.81997

  94. Li Y et al (2020) Salt reduction in semi-solid food gel via inhomogeneous distribution of sodium-containing coacervate: effect of gum Arabic. Food Hydrocoll 106102. https://doi.org/10.1016/j.foodhyd.2020.106102

  95. Timilsena YP et al (2019) Complex coacervation: principles, mechanisms and applications in microencapsulation. Int J Biol Macromol 121:1276–1286. https://doi.org/10.1016/j.ijbiomac.2018.10.144

    CAS  CrossRef  Google Scholar 

  96. El-Kader AA, Hashish HA (2019) Encapsulation techniques of food bioproduct. Egypt J Chem. https://doi.org/10.21608/ejchem.2019.16269.1993

    CrossRef  Google Scholar 

  97. Liu W et al (2019) Structural stability of liposome-stabilized oil-in-water pickering emulsions and their fate during: in vitro digestion. Food Funct 10(11):7262–7274. https://doi.org/10.1039/c9fo00967a

    CAS  CrossRef  Google Scholar 

  98. Lee BB, Bhandari BR, Ching SH, Howes T (2019) Improving hydrophilic barriers of encapsulated compounds in Ca-alginate microgel particles through a new ionotropic gelation method for double emulsion droplets. Food Biophys 14(4):365–382. https://doi.org/10.1007/s11483-019-09586-y

    CrossRef  Google Scholar 

  99. Afzaal M et al (2020) Encapsulation of bifidobacterium bifidum by internal gelation method to access the viability in cheddar cheese and under simulated gastrointestinal conditions. Food Sci Nutr 1–9. https://doi.org/10.1002/fsn3.1562

  100. Nicolai T (2019) Gelation of food protein-protein mixtures. Adv Colloid Interface Sci 270:147–164. https://doi.org/10.1016/j.cis.2019.06.006

    CAS  CrossRef  Google Scholar 

  101. Bratovcic A, Suljagic J (2019) Micro- and nano-encapsulation in food industry. Croat J Food Sci Technol 11(1):113–121. https://doi.org/10.17508/cjfst.2019.11.1.17

    CrossRef  Google Scholar 

  102. López-Córdoba A et al (2018) Electrospinning and electrospraying technologies and their potential application in the food industry. In: Rai R, Bai JA (eds) Nanotechnology applications in the food industry. CRC Press, Taylor & Francis Group. ISBN: 978-1-49-878483-2

    Google Scholar 

  103. Beyerinck R et al (2019) Spray drying processes for forming solid amorphous dispersions of drugs and polymers. US 10383941 B2

    Google Scholar 

  104. Tabarestani HS, Jafari SM (2019) Production of food bioactive-loaded nanofibers by electrospinning. Elsevier Inc., pp 1–25

    Google Scholar 

  105. Huang X et al (2019) Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high-efficiency PM2.5 capture. Sci China Mater 62(3):423–436. https://doi.org/10.1007/s40843-018-9320-4

    CAS  CrossRef  Google Scholar 

  106. Estevez-Areco S et al (2018) Release kinetics of rosemary (Rosmarinus officinalis) polyphenols from polyvinyl alcohol (PVA) electrospun nanofibers in several food simulants. Food Packag Shelf Life 18:42–80. https://doi.org/10/1016/j.fpsl.2018.08.006

  107. Chen L et al (2019) A comprehensive review of electrospinning block copolymers. Soft Matter 15(12):2490–2510. https://doi.org/10.1039/c8sm02484g

    CAS  CrossRef  Google Scholar 

  108. Senthil Muthu Kumar T et al (2019) A comprehensive review of electrospun nanofibers: food and packaging perspective. Compos Part B Eng 175:107074. https://doi.org/10.1016/j.compositesb.2019.107074

  109. Alehosseini A et al (2019) Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocoll 87:758–771. https://doi.org/10.1016/j.foodhyd.2018.08.056

    CAS  CrossRef  Google Scholar 

  110. Estevez-Areco S et al (2020) Active bilayer films based on cassava starch incorporating ZnO nanorods and PVA electrospun mats containing rosemary extract. Food Hydrocoll 108:106054. https://doi.org/10.1016/j.foodhyd.2020.106054

  111. Wang P et al (2020) Electrospraying technique and its recent application advances for biological macromolecule encapsulation of food bioactive substances. Food Rev Int 1–23. https://doi.org/10.1080/87559129.2020.1738455

  112. Flores M, Toldrá F (2020) Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products. Meat Sci 171:108272. https://doi.org/10.1016/j.meatsci.2020.108272

  113. Rezaeinia H et al (2019) Electrohydrodynamic atomization of balangu (Lallemantia royleana) seed gum for the fast-release of mentha longifolia L. essential oil: characterization of nano-capsules and modeling the kinetics of release. Food Hydrocoll 93:374–385. https://doi.org/10.1016/j.foodhyd.2019.02.018

    CAS  CrossRef  Google Scholar 

  114. O’Sullivan JJ et al (2019) Atomisation technologies used in spray drying in the dairy industry: a review. J Food Eng 243:57–69. https://doi.org/10.1016/j.jfoodeng.2018.08.027

    CAS  CrossRef  Google Scholar 

  115. Di Pretoro A, Manenti F (2020) Spray drying. In: Springer briefs in applied sciences and technology. Springer, pp 65–74. https://doi.org/10.1007/978-3-030-34572-3_7

  116. Batens M et al (2020) Feasibility of electrospraying fully aqueous bovine serum albumin solutions. Eur J Pharm Biopharm 147:102–110. https://doi.org/10.1016/j.ejpb.2019.12.011

    CAS  CrossRef  Google Scholar 

  117. Wood L (2019) Encapsulated flavors and fragrances market—global industry analysis, trends, market size, and forecasts up to 2024—ResearchAndMarkets.com [Online]. https://www.businesswire.com/news/home/20190325005770/en/Encapsulated-Flavors-Fragrances-Market---Global-Industry. Accessed 24 June 2020

  118. Infinium-Global-Research (2019) Encapsulated flavors and fragrances Market (technology—physical process, physicochemical process, chemical process, extrusion, fluid bed, and others; Encapsulation process—hybrid-encapsulation, micro-encapsulation, nano-encapsulation, and macro-encaps [Online]. https://www.infiniumglobalresearch.com/consumer-goods-packaging/global-encapsulated-flavors-fragrances-market. Accessed 24 June 2020

  119. Zion-Market-Research (2018) Global encapsulated flavors and fagrances market set for rapid growth, to reach USD 8,122.74 million by 2024 [Online]. https://www.zionmarketresearch.com/news/encapsulated-flavors-fragrances-market. Accessed 24 June 2020

  120. Hegde IA (2018) Encapsulated flavors and fragrances market worth over $8 billion by 2024: Global Market Insights, Inc. [Online]. https://www.globenewswire.com/news-release/2018/07/04/1533218/0/en/Encapsulated-Flavors-and-Fragrances-Market-worth-over-8-billion-by-2024-Global-Market-Insights-Inc.html. Accessed 24 June 2020

  121. Zion J, John MR (2018) Global encapsulated flavors and fragrances market worth over USD 8,122.74 million by 2024: Zion Market Research [Online]. https://www.globenewswire.com/news-release/2018/10/09/1618625/0/en/Global-Encapsulated-Flavors-and-Fragrances-Market-Worth-Over-USD-8-122-74-Million-By-2024-Zion-Market-Research.html. Accessed 24 June 2020

  122. Hallagan JB, Hall RL, Drake J (2020) The GRAS provision—the FEMA GRAS program and the safety and regulation of flavors in the United States. Food Chem Toxicol 138:111236. https://doi.org/10.1016/j.fct.2020.111236

Download references

The authors want to thank Universidad de Buenos Aires (UBACYT 2018 20020170100381BA), ANPCyT (PICT 2019–04509, PICT 2017–2362 and PICT Startup 2016–4639).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Goyanes or Lucía Famá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Quintero-Borregales, L.M., Goyanes, S., Famá, L. (2022). Containers for Encapsulation of Aroma/Flavour for Food Applications. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_16

Download citation