Skip to main content

CDs: A Potential Candidate for Improving Water Solubility and Stability of Hydrophobic Guest Molecules

  • 447 Accesses

Part of the Composites Science and Technology book series (CST)

Abstract

CDs and their derivatives have been used in various industries due to their specific capability to form inclusion complexes via reversible interactions with hydropho and hydrophil chemical structures. This characteristic of CDs has caused their applications in solubility control (change the solubility), stabilization of volatile compounds, masking unpleasant smells of the guest, enhancing the complexation efficiency, reduction of volatility, directing chemical reactions, controlling Fluorescence and light absorption, compatibility with other materials, encapsulation of wide ranges of guest molecules and changing their properties and also controlled release of guest molecules in drug delivery systems. In pharmaceutical industry, improving water solubility and bioavailability of drugs are highly important and can act as a challenge in controlled drug delivery. Encapsulation bring out specific alteration in properties of the guest molecules such as increase shelf time, stabilization of light-sensitive molecules, oxygen-sensitive and highly volatile components, change chemical and physical properties of guest molecules, increasing solubility of guest molecules with low solubility, protection of substances against degradation by microorganisms, UV light, oxidation and chemical reactions and masking unpleasant smells or tastes, pigments or the color of guest molecules. In this review, application of CDs inclusion complex formation for improving water solubility and controlled release of some hydrophobic guests (ibuprofen, acetaminophen, curcumin, cinnamon essential oil, ciprofloxacin and ofloxacin) were explained.

Keywords

  • CD
  • Inclusion complex formation
  • Ciprofloxacin
  • Ibuprofen
  • Curcumin
  • Cinnamon essential oil
  • Ofloxacin
  • Acetaminophen
  • Phase solubility

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Szetjli J (2009) Chem Rev 98:1743–1753

    Google Scholar 

  2. Amiri S, Amiri S (2017) CDs, properties and industrial applications. Wiley

    Google Scholar 

  3. Hedges RA (1998) Chem Rev 98:2035–2044

    CrossRef  CAS  Google Scholar 

  4. Jansook P, Ritthidej GC, Ueda H, Stefansson E, Loftsson T (2010) J Pharm Pharm Sci 13:336–350

    CrossRef  CAS  Google Scholar 

  5. Villiers A (1891) Seances Acad Sci 112:536–538

    Google Scholar 

  6. Szetjli J (1998) Chem Rev 98:1743–1753

    CrossRef  Google Scholar 

  7. Szetjli J (1989) TIBTRCH 7:171–174

    Google Scholar 

  8. Szejtli J (1982) CDs and their inclusion complexes. Akadémiai Kiadó, Budapest, Hungary

    Google Scholar 

  9. Tavassoli-Kafrani E, Goli SAH, Fathi M (2017) Food Bioprocess Technol. https://doi.org/10.1007/s11947-017-2026-9

  10. Benavides S, Cortés P, Parada J, Franco W (2016) Food Chem 204:77–83

    CrossRef  CAS  Google Scholar 

  11. Hirayama F, Uekama K (1987) Methods of investigating and preparing inclusion compounds. In: Duchêne D (ed) CDs and their industrial uses. Paris, Editions de Santé, pp 131–172

    Google Scholar 

  12. Chen G, Jiang M (2011) Chem Soc Rev 40:2254–2266

    CrossRef  CAS  Google Scholar 

  13. Nimse SB, Kim T (2013) Chem Soc Rev 42:366–386

    CrossRef  CAS  Google Scholar 

  14. Semsarzadeh MA, Amiri S (2012) Silicon 4:151–156

    CrossRef  CAS  Google Scholar 

  15. Semsarzadeh MA, Amiri S (2013) Bull Mater Sci 36:989–996

    Google Scholar 

  16. Eastburn SD, Tao BY (1994) Biotechnol Adv 12:325–339

    CrossRef  CAS  Google Scholar 

  17. Buchwald P (2002) J Phys Chem B 106:6864–6870

    CrossRef  CAS  Google Scholar 

  18. Wang Q, Sanming L, Che X, Fan X, Lib C (2010) J Pharm 5:188–193

    Google Scholar 

  19. Percival SL, Bowler PG, Russell D (2005) J Hosp Infect 60:1–7

    CrossRef  CAS  Google Scholar 

  20. Yadav VR, Suresh S, Devi K, Yadav S (2009) Pharm Sci Tech 10:752–762

    CrossRef  CAS  Google Scholar 

  21. Atares L, De Jesús C, Talens P, Chiralt A (2010) J Food Eng 99:384–391

    CrossRef  CAS  Google Scholar 

  22. Loftsson T, Duchene D (2007) Int J Pharm 329:1–11

    CrossRef  CAS  Google Scholar 

  23. Hakkarainen B, Fujita K, Immel S, Kenne L, Sandstrom C (2005) Carbohydr Res 340:1539–1545

    CrossRef  CAS  Google Scholar 

  24. Irie T, Uekama K (1997) J Pharm Sci 86:147–162

    CrossRef  CAS  Google Scholar 

  25. Aggarwal S, Singh PN, Mishra B (2002) Pharmazie 57:191–193

    CAS  Google Scholar 

  26. Archontaki HA, Vertzoni MV, Athanassioum Malaki MH (2002) J Pharm Biomed Anal 28:761–769

    CrossRef  CAS  Google Scholar 

  27. Arima H, Yunomae K, Miyake K, Irie T, Hirayama F, Uekama K (2001) J Pharm Sci 90:690–701

    CrossRef  CAS  Google Scholar 

  28. Pandey S, Varshney HM, Gupta MM (2013) RJCES 1:19–25

    Google Scholar 

  29. Rajendiran N, Mohandoss T, Thulasidhasan J (2016) Phys Chem Liq 54:193–212

    CrossRef  CAS  Google Scholar 

  30. Choi HG, Lee BJ, Han JH, Lee MK, Park KM, Yong CS (2001) Drug Dev Ind Pharm 27:857–862

    CrossRef  CAS  Google Scholar 

  31. Chutimaworapan S, Ritthidej GC, Yonemochi E, Oguchi T, Yamamoto K (2001) Drug Dev Ind Pharm 26:1141–1150

    CrossRef  Google Scholar 

  32. Dalmora ME, Dalmora SL, Oliveira AG (2001) Int J Pharm 222:45–55

    CrossRef  CAS  Google Scholar 

  33. Baviskara P, Bedsea A, Sadiqueb S, Kundea V, Jaiswal S (2013) Int J Pharm Sci Rev Res 13:70–76

    Google Scholar 

  34. Amiri S, Rahimi A (2017) Int J Polym Mater Po. https://doi.org/10.1080/00914037.2018.1482467

  35. Chen L, Qifeng D, Liu C, Chen J, Song L, Chen X (2012) Front Med 6:195–203

    CrossRef  Google Scholar 

  36. Farmer S, Anderson P, Burns P, Velagaleti R (2002) Technology 32:28–42

    Google Scholar 

  37. Masoumi S, Amiri S, Bahrami SH (2017) J Ind Text. https://doi.org/10.1177/1528083718764910

  38. David SJ (2016) Pharmaceutics dosage form and design, 2nd edn, chapter 4, pp 4–7

    Google Scholar 

  39. Jahromi MM, Ghaemi H, Tafti MA, Arabzadeh A, Afsharypuor S (2015) J Nat Pharm Prod 10:1–3

    Google Scholar 

  40. Amiri S, Rahimi A (2014) J Polym Res. https://doi.org/10.1007/s10965-014-0566-5

  41. Amiri S, Rahimi A (2014) J Polym Res. https://doi.org/10.1007/s10965-014-0624-z

  42. Amiri S, Rahimi A (2015) J Polym Res. https://doi.org/10.1007/s10965-015-0699-1

  43. Patel R, Patel M (2010) Drug Discov Ther 4:442–452

    CAS  Google Scholar 

  44. Melle-Franco M, Strutyński K, Borges F, Brett CMA, Manuela EPJ (2017) J Environ Sci Health Part A. https://doi.org/10.1080/10934529.2016.1258864

  45. Amiri S, Rahimi A (2018) J Ind Text https://doi.org/10.1177/1528083718764911

  46. El-Majri MA, El-Basir MM (2016) J Res Pharm 7:87–90

    CAS  Google Scholar 

  47. Amiri S, Askari F (2018) Pharm Innov. https://doi.org/10.1007/s12247-018-9328-y

  48. Gowthamarajan K, Kulkarni TG, Nenkateswaran G, Samanta MK (2002) Indian J Pharm Sci 1:525–528

    Google Scholar 

  49. Sousa J, Alves G, Oliveira P, Fortuna A, Falcão A (2017) Eur J Pharm Sci 97:30–37

    CrossRef  CAS  Google Scholar 

  50. Masoumi S, Amiri S, Bahrami SHJ (2018) TEXT 1–10. https://doi.org/10.1080/00405000.2017.1398625

  51. Sahoo S, Chkaborti CK, Mishrab SC, Nath U (2011) Int J Pharm Pharm Sci 3:165–170

    CAS  Google Scholar 

  52. Semsarzadeh MA, Amiri S (2013) Bull Mater Sci 36:989–996

    CrossRef  CAS  Google Scholar 

  53. Gould S, Scott RC (2005) Food Chem Toxicol 43:1451–1459

    CrossRef  CAS  Google Scholar 

  54. Szente L, Szejtli J, Kis GL (1998) J Pharm Sci 87:778–781

    CrossRef  CAS  Google Scholar 

  55. Liu L, Guo QX (2002) J Incl Phenom Macroc Chem. 42:1–14

    CrossRef  CAS  Google Scholar 

  56. Higuchi T, Connors A (1965) Phase-solubility techniques. Wiley-Interscience, New York

    Google Scholar 

  57. Aziz Z, Abu SF, Chong NJ (2012) Burns 38:307–318

    CrossRef  CAS  Google Scholar 

  58. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Burns 33:139–148

    CrossRef  Google Scholar 

  59. Szegedi A, Popov M, Yonchev K, Makk J, Mihalya J, Shestakov PJ (2014) Mater Chem B 2:6283–6292

    CrossRef  CAS  Google Scholar 

  60. Ebrahimi A, Kalantar Motamedi MH (2012) Trauma Mon 17:255–258

    CrossRef  Google Scholar 

  61. Jodar Karin SP, Balc Victor M, Chaud Marco V, Tubino M, Valquiria MH, Yoshida M, Oliveira JR, Marta MDC (2015) J Pharm Sci 104:2241–2254

    Google Scholar 

  62. Ratnaparakhi MP (2012) Int J Pharm Pharm Sci 4:305–316

    Google Scholar 

  63. Venkataraman M, Nagarsenker M (2012) AAPS Pharm Sci Technol 14:254–264

    CrossRef  Google Scholar 

  64. Ping L, Xiangmin X, Longlong W, Binjie L, Zhao Y (2015) Med Chem Commun 6:2204–2208

    CrossRef  Google Scholar 

  65. Amiri S, Nalbandi B (2018) J Inorg Organomet Polym. https://doi.org/10.1007/s10904-018-0809-8

  66. Zhanel GG, Ennis K, Vercaigne L, Walkty A, Gin AS, Embil J, Smith H, Hoban DJA (2002) Drugs 62:13–59

    Google Scholar 

  67. Neu HC (1989) Am J Med 87(Suppl. 6C):2S-9S

    CAS  Google Scholar 

  68. Amiri S, Mehrizi M (2020) J Text Inst 111. https://doi.org/10.1080/00405000.2019.1657614

  69. Dillard CJ, German JB (2000) J Sci Food Agric 80:1744–1756

    CrossRef  CAS  Google Scholar 

  70. Sharma G, Singh RP, Chan DCF, Agarwal R (2003) Anticancer Res 23:2649–2655

    CAS  Google Scholar 

  71. Singh RP, Sharma G, Sivanandhan D, Agarwal C, Agarwal R (2003) Biomark Prev 12:933–939

    CAS  Google Scholar 

  72. Awad AB, Williams H, Fink CS (2003) J Nutr Biochem 14:111–119

    CrossRef  CAS  Google Scholar 

  73. Marques HMC (2010) Flavour Fragr J 25:313–326

    CrossRef  Google Scholar 

  74. Munin A, Edwards-Lévy F (2011) Pharmaceutics 3:793–829

    CrossRef  CAS  Google Scholar 

  75. Fang Z, Bhandari B (2010) Trends Food Sci Technol 21:510–523

    CrossRef  CAS  Google Scholar 

  76. Chandrasekar V (2010) Optimizing the microwave-assisted extraction of phenolic antioxidants from apple pomace and microencapsulation in CDs. MSc Thesis, Purdue University Graduate School

    Google Scholar 

  77. Arancibia M, Giménez B, López-Caballero ME, Gómez-Guillén MC, Montero P (2014) LWT Food Sci Technol 59:989–995

    CrossRef  CAS  Google Scholar 

  78. El-Baroty GS, Abd El-Baky HH, Farag RS, Saleh MA (2010) Afr J Biochem Res 4:167–174

    Google Scholar 

  79. Pereva S, Sarafska T, Bogdanova S, Spassov TJ (2016) Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2016.04.006

  80. Hussein K, Turk M, Wahl MA (2007) Pharm Res 24:585–592

    CrossRef  CAS  Google Scholar 

  81. Tozuka Y, Fujito TY, Moribe K, Yamamato K (2006) J Incl Phenom Macrocycl Chem 56:33–37

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Amiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amiri, S., Amiri, S. (2022). CDs: A Potential Candidate for Improving Water Solubility and Stability of Hydrophobic Guest Molecules. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_15

Download citation