Skip to main content

Containers Based Drug Delivery for Neuroscience

  • 204 Accesses

Part of the Composites Science and Technology book series (CST)

Abstract

Drug development for neuroscience or targeting the brain is challenging and considered a complex research area in pharmaceutical sciences. To act upon these drugs should be able to reach their site of action. However, these sites are protected from all external entities by several barriers. The blood–brain barrier (BBB) prevents the entry of many drugs, including antibiotics, neuropeptides Etc. The complexity of brain disorders and the presence of BBB prevents the development of drugs. The past decade has seen a boom in the drug delivery methods for treatment in neuroscience. One reason for this is the alarming increase in the neurological diseases observed. The other reason is that a lot of information is now available about the CNS and a better understanding of the methods and the drug interaction through which efficient drug delivery can occur. Many strategies like colloidal drug carriers, cell-penetrating peptides, receptor and carrier-mediated transport need further research.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_14
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Abbreviations

BBB:

Blood Brain Barrier

CNS:

Central Nervous System

DALY:

Years of Life Lost (YLL)

YLD:

Years Lived with Disability

CMT:

Carrier Mediated Transport

RMT:

Receptor Mediated Transport

CDDS:

Chemical Drug Delivery System

CSF:

Cerebrospinal Fluid

CPP:

Cell Penetrating Peptides

FUS:

focused ultrasound

Tf:

iron binding protein transferrin

TfR:

Tf receptor

PEG-PLA:

Poly ethylene glycol-poly lactic acid

References

  1. Banks WA (2016) From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15:275–292

    CAS  Google Scholar 

  2. Goyal D, Shuaib S, Mann S, Goyal B (2017) Rationally Designed Peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: potential therapeutics of Alzheimer’s disease. ACS Comb Sci 19:55–80

    CAS  Google Scholar 

  3. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    CAS  Google Scholar 

  4. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    CAS  Google Scholar 

  5. Engelhardt B, Sorokin L (2009) The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511

    Google Scholar 

  6. Lund-Andersen H (1979) Transport of glucose from blood to brain. Physiol Rev 59:305–352

    CAS  Google Scholar 

  7. Saunders NR et al (2014) The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front Neurosci 8

    Google Scholar 

  8. Stewart PA, Tuor UI (1994) Blood-eye barriers in the rat: Correlation of ultrastructure with function. J Comp Neurol 340:566–576

    CAS  Google Scholar 

  9. Feigin VL et al (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:459–480

    Google Scholar 

  10. Rodriguez A, Tatter S, Debinski W (2015) Neurosurgical techniques for disruption of the blood-brain barrier for glioblastoma treatment. Pharmaceutics 7:175–187

    CAS  Google Scholar 

  11. Gumerlock M, Belshe B, Madsen R, Watts C (1992) Osmotic blood-brain barrier disruption and chemotherapy in the treatment of high grade malignant glioma: patient series and literature review. J Neurooncol 12

    Google Scholar 

  12. Mukhopadhyay A, Mukhopadhyay B, Basu SK (1995) Circumvention of multidrug resistance in neoplastic cells through scavenger receptor mediated drug delivery. FEBS Lett 376:95–98

    CAS  Google Scholar 

  13. Misra A, Ganesh S, Shahiwala A, Shah SP (2003) Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 6:252–273

    CAS  Google Scholar 

  14. Taylor EM (2002) The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet 41:81–92

    CAS  Google Scholar 

  15. Craparo EF, Bondì ML, Pitarresi G, Cavallaro G (2011) Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci Ther 17:670–677

    CAS  Google Scholar 

  16. Duskey JT et al (2017) Current strategies for the delivery of therapeutic proteins and enzymes to treat brain disorders, Int Rev Neuroboiol 137:1–28

    Google Scholar 

  17. Buchwald P, Bodor N (2001) A simple, predictive, structure-based skin permeability model. J Pharm Pharmacol 53:1087–1098

    CAS  Google Scholar 

  18. Alessandrini A, Namura S, Moskowitz MA, Bonventre JV (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci 96:12866–12869

    CAS  Google Scholar 

  19. Deol P, Khuller G (1997) Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochim Biophys Acta Gen Subj 1334:161–172

    CAS  Google Scholar 

  20. Kshirsagar NA, Pandya SK, Kirodian GB, Sanath S (2005) Liposomal drug delivery system from laboratory to clinic. J Postgrad Med 51(Suppl 1):S5-15

    Google Scholar 

  21. Shapira I, Budman DR, Bradley T, Gralla R (2009) Evolving lipid-based delivery systems in the management of neoplastic disease. Oncol Rev 3:113–124

    Google Scholar 

  22. Uppadhyay AK, Dixit VK (1998) Bioadhesive liposomes bearing levonorgestrel as controlled drug delivery system. Pharmazie 53:421–422

    CAS  Google Scholar 

  23. Karande SC et al (1995) Successful treatment of antimony-resistant visceral leishmaniasis with liposomal amphotericin B (L-AmpB-LRC) in a child. Trop Doct 25:80–81

    CAS  Google Scholar 

  24. Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152

    CAS  Google Scholar 

  25. Jain NK, Rana AC, Jain SK (1998) Brain drug delivery system bearing dopamine hydrochloride for effective management of parkinsonism. Drug Dev Ind Pharm 24:671–675

    CAS  Google Scholar 

  26. Yang S, Zhu J, Lu Y, Liang B, Yang C (1999) Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 16:751–757

    CAS  Google Scholar 

  27. Saraiva C et al (2016) Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47

    CAS  Google Scholar 

  28. Huang L, Liu Y (2011) In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng 13:507–530

    CAS  Google Scholar 

  29. Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA (2008) Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 5:155–174

    CAS  Google Scholar 

  30. Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82:1367–1375

    CAS  Google Scholar 

  31. Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release 161:264–273

    CAS  Google Scholar 

  32. Deo MR, Sant VP, Parekh SR, Khopade AJ, Banakar UV (1997) Proliposome-based transdermal delivery of levonorgestrel. J Biomater Appl 12:77–88

    CAS  Google Scholar 

  33. Tiwari G et al (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2:2

    Google Scholar 

  34. Juillerat-Jeanneret L (2008) The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13:1099–1106

    CAS  Google Scholar 

  35. Pirollo KF et al (2016) Safety and efficacy in advanced solid tumors of a targeted nanocomplex carrying the p53 gene used in combination with docetaxel: a phase 1b study. Mol Ther 24:1697–1706

    CAS  Google Scholar 

  36. Bramini M et al (2014) Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano 8:4304–4312

    CAS  Google Scholar 

  37. Rautio J, Laine K, Gynther M, Savolainen J (2008) Prodrug approaches for CNS delivery. AAPS J 10:92–102

    CAS  Google Scholar 

  38. Oldendorf WH, Hyman S, Braun L, Oldendorf SZ (1972) Blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 80178:984–986

    Google Scholar 

  39. Chen K-T, Wei K-C, Liu H-L (2019) Theranostic strategy of focused ultrasound induced blood-brain barrier opening for CNS disease treatment. Front Pharmacol 10

    Google Scholar 

  40. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20

    Google Scholar 

  41. McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS (2012) Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in Rhesus Macaques. Cancer Res 72:3652–3663

    CAS  Google Scholar 

  42. Vykhodtseva NI, Hynynen K, Damianou C (1995) Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol 21:969–979

    CAS  Google Scholar 

  43. Vykhodtseva N, McDannold N, Hynynen K (2008) Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics 48:279–296

    CAS  Google Scholar 

  44. Burgess A, Hynynen K (2014) Drug delivery across the blood–brain barrier using focused ultrasound. Expert Opin Drug Deliv 11:711–721

    CAS  Google Scholar 

  45. Bodor N, Buchwald P (2010) Retrometabolism-based drug design and targeting. In: Burger’s medicinal chemistry and drug discovery. Wiley & Sons, Inc. Pharmazie 65(6):395–403

    Google Scholar 

  46. Alvarez-Erviti L et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    CAS  Google Scholar 

  47. Zhuang X et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779

    CAS  Google Scholar 

  48. Matsumoto J et al (2017) Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson’s disease? Acta Neuropathol Commun 5:71

    Google Scholar 

  49. Chen CC et al (2016) Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 9:509–529

    CAS  Google Scholar 

  50. Dutta D, Donaldson JG (2012) Search for inhibitors of endocytosis. Cell Logist 2:203–208

    Google Scholar 

  51. Haney MJ et al (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30

    CAS  Google Scholar 

  52. Liu Y et al (2015) Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep 5:17543

    CAS  Google Scholar 

  53. Qin Y et al (2011) Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 420:304–312

    CAS  Google Scholar 

  54. Wei X et al (2015) A D-Peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery. Angew Chemie Int Ed. 54:3023–3027

    CAS  Google Scholar 

  55. Díaz-Perlas C et al (2017) Phage display as a tool to discover blood-brain barrier (BBB)-shuttle peptides: panning against a human BBB cellular model. Biopolymers 108, e22928

    Google Scholar 

  56. Thom G et al (2018) Isolation of blood-brain barrier-crossing antibodies from a phage display library by competitive elution and their ability to penetrate the central nervous system. MAbs 10:304–314

    CAS  Google Scholar 

  57. Xiao G, Gan LS (2013) Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol (2013)

    Google Scholar 

  58. Pulgar VM (2019) Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci 13:1–9

    Google Scholar 

  59. Rodriguez-Boulan E, Kreitzer G, Müsch A (2005) Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6:233–247

    CAS  Google Scholar 

  60. Gregori M et al (2016) Novel antitransferrin receptor antibodies improve the blood-brain barrier crossing efficacy of immunoliposomes. J Pharm Sci 105:276–283

    CAS  Google Scholar 

  61. Boado RJ et al (2008) Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human blood-brain barrier. Biotechnol Bioeng 99:475–484

    CAS  Google Scholar 

  62. Pardridge WM, Boado RJ (2012) Reengineering biopharmaceuticals for targeted delivery across the blood–brain barrier, Methods Enzymol 503:269–292

    Google Scholar 

  63. Boado RJ, Hui EK-W, Lu JZ, Pardridge WM (2012) Glycemic control and chronic dosing of rhesus monkeys with a fusion protein of iduronidase and a monoclonal antibody against the human insulin receptor. Drug Metab Dispos 40:2021–2025

    CAS  Google Scholar 

  64. Pardridge WM (2008) Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem 19:1327–1338

    CAS  Google Scholar 

  65. Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA (2010) Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer’s amyloid β-peptide elimination from the brain. J Neurochem 115:1077–1089

    CAS  Google Scholar 

  66. Kanwar JR, Sriramoju B, Kanwar RK (2012) Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int J Nanomedicine 7:3259–3278

    CAS  Google Scholar 

  67. Demeule M et al (2008) Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 324:1064–1072

    CAS  Google Scholar 

  68. van Rooy I et al (2010) Identification of peptide ligands for targeting to the blood-brain barrier. Pharm Res 27:673–682

    Google Scholar 

  69. Pardridge WM, Oldendorf WH (1975) Kinetics of blood-brain barrier transport of hexoses. Biochim Biophys Acta Biomembr 382:377–392

    CAS  Google Scholar 

  70. Valentinuzzi ME, Friedman LM, Furberg CD, DeMets DL (2004) Fundamentals of clinical trials, 3rd edn. Biomed Eng 3:43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Baby Chakrapani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Jose, D.A., Krishnapriya, Baby Chakrapani, P.S. (2022). Containers Based Drug Delivery for Neuroscience. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_14

Download citation