Skip to main content

Containers for Thermal Energy Storage

  • 162 Accesses

Part of the Composites Science and Technology book series (CST)

Abstract

Phase change materials (PCMs) have significant number of applications. PCMs plays a vital role in managing the supply and demand of the energy. The present work deals with the review of containers used for the phase change materials for different applications, namely, thermal energy storage, electronic cooling, food and drug transportation and solar water and space heating. The material and geometry of container plays a crucial role in the thermal performance of the system. The rectangular containers are the most preferred containers followed by the cylindrical one due to the fast charging of the PCMs. The most important properties of containers are; it should be leak proof, accommodate volume change and should have high thermal conductivity to improve the heat exchange. For encapsulated PCMs, the thermal and structural stability is very important in addition to the above properties. Aluminum is widely used container material due to it’s high thermal conductivity, good corrosion resistance and lower weight.

Keywords

  • Thermal energy storage
  • Phase change materials
  • Latent heat
  • Encapsulated phase change materials

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_13
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  1. Ali S, Deshmukh SP (2019) An overview: applications of thermal energy storage using phase change materials. Mater Today: Proc 26:1231–1237

    Google Scholar 

  2. Borri E, Sze JY, Tafone A, Romagnoli A, Li Y, Comodi G (2020) Experimental and numerical characterization of sub-zero phase change materials for cold thermal energy storage. Appl Energy 275(April):115131

    Google Scholar 

  3. Tiwari V, Srinivasan P (2020) SWOT analyses of high-temperature phase change materials for thermal energy storage. Mater Today: Proceed

    Google Scholar 

  4. Joulin A, Zalewski L, Lassue S, Naji H (2014) Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material. Appl Therm Eng 66(1–2):171–180

    CAS  Google Scholar 

  5. Lakhdari YA, Chikh S, Campo A (2020) Analysis of the thermal response of a dual phase change material embedded in a multi-layered building envelope. Appl Thermal Eng 179:115502

    Google Scholar 

  6. El Ouali A et al (2019) Heat transfer within mortar containing micro-encapsulated PCM: numerical approach. Constr Build Mater 210:422–433

    Google Scholar 

  7. Saxena R, Rakshit D, Kaushik SC (2020) Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings. Renew Energy 149:587–599

    Google Scholar 

  8. Tan FL, Tso CP (2004) Cooling of mobile electronic devices using phase change materials. Appl Therm Eng 24(2–3):159–169

    CAS  Google Scholar 

  9. Behi H, Ghanbarpour M, Behi M (2017) Investigation of PCM-assisted heat pipe for electronic cooling. Appl Therm Eng 127:1132–1142

    Google Scholar 

  10. Sundaram AS, Seeniraj RV, Velraj R (2010) An experimental investigation on passive cooling system comprising phase change material and two-phase closed thermosyphon for telecom shelters in tropical and desert regions. Energy Build 42(10):1726–1735

    Google Scholar 

  11. Mehryan SAM, Ghalambaz M, Sasani Gargari L, Hajjar A, Sheremet M (2020) Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. J Energy Storage 28(January):101236

    Google Scholar 

  12. Praveen B, Suresh S, Pethurajan V (2019) Heat transfer performance of graphene nano-platelets laden micro-encapsulated PCM with polymer shell for thermal energy storage based heat sink. Appl Thermal Eng 156:237–249

    Google Scholar 

  13. Tahmasebi A, Zargartalebi H, Mehryan SAM, Ghalambaz M (2020) Thermal and hydrodynamic behavior of suspensions comprising nano-encapsulated phase change materials in a porous enclosure. Int Commun Heat Mass Transf 116(June):104634

    Google Scholar 

  14. Rodríguez-Cumplido F, Pabón-Gelves E, Chejne-Jana F (2019) Recent developments in the synthesis of microencapsulated and nanoencapsulated phase change materials. J Energy Storage 24(April):100821

    Google Scholar 

  15. Khadiran T, Hussein MZ, Zainal Z, Rusli R (2015) Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Sol Energy Mater Sol Cells 143:78–98

    CAS  Google Scholar 

  16. Yataganbaba A, Ozkahraman B, Kurtbas I (2017) Worldwide trends on encapsulation of phase change materials: a bibliometric analysis (1990–2015). Appl Energy 185:720–731

    Google Scholar 

  17. Giro-Paloma J, Martínez M, Cabeza LF, Fernández AI (2016) Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renew Sustain Energy Rev 53:1059–1075

    CAS  Google Scholar 

  18. Gimenez-Gavarrell P, Fereres S (2017) Glass encapsulated phase change materials for high temperature thermal energy storage. Renew Energy 107:497–507

    CAS  Google Scholar 

  19. Guo S et al (2018) Mobilized thermal energy storage: Materials, containers and economic evaluation. Energy Convers Manage 177(June):315–329

    CAS  Google Scholar 

  20. Zayed ME et al (2020) Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods. J Energy Storage 30:101341

    Google Scholar 

  21. Fukahori R, Nomura T, Zhu C, Sheng N, Okinaka N, Akiyama T (2016) Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Appl Energy 170:324–328

    CAS  Google Scholar 

  22. Huang S et al (2020) Experimental study on the influence of PCM container height on heat transfer characteristics under constant heat flux condition. Appl Thermal Eng 172:115159

    Google Scholar 

  23. Ghafari S, Khorshidi J, Niazi S, Samari F (2020) New correlations for investigating the melting of phase change material loading green synthesized CuO nanosheets in a spherical container: experimental study. J Energy Storage 32(July):101752

    Google Scholar 

  24. He S, Wang W, Wei L, Ding J (2020) Heat transfer enhancement and melting behavior of phase change material in a direct-contact thermal energy storage container. J Energy Storage 31:101665

    Google Scholar 

  25. Salunkhe PB, Shembekar PS (2012) A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev 16(8)

    Google Scholar 

  26. Chiew J, Chin CS, Toh WD, Gao Z, Jia J (2018) Low-temperature macro-encapsulated phase change material based thermal energy storage system without air void space design. Appl Therm Eng 141(June):928–938

    Google Scholar 

  27. Ghahramani Zarajabad O, Ahmadi R (2018) Employment of finned PCM container in a household refrigerator as a cold thermal energy storage system. Thermal Sci Eng Progress 7:115–124

    Google Scholar 

  28. Fang G, Li H, Yang F, Liu X, Wu S (2009) Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J 153(1–3):217–221

    CAS  Google Scholar 

  29. Leng G et al (2018) Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage. Appl Energy 217(February):212–220

    CAS  Google Scholar 

  30. Yu X, Luan J, Chen W, Tao J (2020) Preparation and characterization of paraffin microencapsulated phase change material with double shell for thermal energy storage. Thermochimica Acta 689:178652

    Google Scholar 

  31. Song S et al (2019) Natural microtubule encapsulated phase change material with high thermal energy storage capacity. Energy 172:1144–1150

    CAS  Google Scholar 

  32. Liao H, Chen W, Liu Y, Wang Q (2020) A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Compos Sci Technol 189:108010

    Google Scholar 

  33. McMurray JW, Jolly BC, Raiman SS, Schumacher AT, Cooley KM, Lara-Curzio E (2020) Ceramic encapsulated metal phase change material for high temperature thermal energy storage. Appl Thermal Eng 170(October):115003

    Google Scholar 

  34. Zou Q, Jie J, Shen Z, Han N, Li T (2019) A new concept of Al-Si alloy with core-shell structure as phase change materials for thermal energy storage. Mater Lett 237:193–196

    CAS  Google Scholar 

  35. El Omari K, Kousksou T, Le Guer Y (2011) Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices. Appl Therm Eng 31(14–15):3022–3035

    Google Scholar 

  36. Shokouhmand H, Kamkari B (2013) Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp Thermal Fluid Sci 50:201–222

    CAS  Google Scholar 

  37. Yin H, Gao X, Ding J, Zhang Z, Fang Y (2010) Thermal management of electronic components with thermal adaptation composite material. Appl Energy 87(12):3784–3791

    CAS  Google Scholar 

  38. Ho CJ, Liu YC, Ghalambaz M, Yan MW (2020) Forced convection heat transfer of nano-encapsulated phase change material (NEPCM) suspension in a mini-channel heatsink. Int J Heat Mass Transfr, 155: 2020

    Google Scholar 

  39. Ghalambaz M, Hashem Zadeh SM, Mehryan SAM, Haghparast A, Zargartalebi H (2020) Free convection of a suspension containing nano-encapsulated phase change material in a porous cavity; local thermal non-equilibrium model. Heliyon 6(5):e03823

    Google Scholar 

  40. Seyf HR, Zhou Z, Ma HB, Zhang Y (2013) Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. Int J Heat Mass Transf 56(1–2):561–573

    CAS  Google Scholar 

  41. Sabbah R, Farid MM, Al-Hallaj S (2009) Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study. Appl Therm Eng 29(2–3):445–454

    CAS  Google Scholar 

  42. Ren Q, Guo P, Zhu J (2020) Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite. Int J Heat Mass Transf 149:1–16

    Google Scholar 

  43. ur Rehman T, Ali HM, Saieed A, Pao W, Ali M (2018) Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transf 127:381–393

    Google Scholar 

  44. Selvaraj V, Krishnan H (2020) Synthesis of graphene encased alumina and its application as nanofluid for cooling of heat-generating electronic devices. Powder Technol 363:665–675

    CAS  Google Scholar 

  45. Faraji H et al (2020) Cooling of recent microprocessors by the fusion of nano-enhanced phase change materials. Materi Today: Proceed

    Google Scholar 

  46. Sykes C (2018) Time- and temperature-controlled transport: supply chain challenges and solutions. P and T 43(3):154–158

    Google Scholar 

  47. Singh S, Gaikwad KK, Lee M, Lee YS (2018) Temperature-regulating materials for advanced food packaging applications: a review. J Food Meas Char 12(1):588–601

    Google Scholar 

  48. Alehosseini E, Jafari SM (2019) Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci Technol 91(October):116–128

    Google Scholar 

  49. Azzouz K, Leducq D, Gobin D (2009) Enhancing the performance of household refrigerators with latent heat storage: an experimental investigation. Int J Refrig 32(7):1634–1644

    CAS  Google Scholar 

  50. Johnston JH, Grindrod JE, Dodds M, Schimitschek K (2008) Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging. Curr Appl Phys 8(3–4):508–511

    Google Scholar 

  51. Gin B, Farid MM (2010) The use of PCM panels to improve storage condition of frozen food. J Food Eng 100(2):372–376

    Google Scholar 

  52. Salgaonkar CP, Kulkarni RS, Kulkarni DD (2011) Eutectic: Phase Change Material for Food Storage. Int J Curr Eng Technol 4(4):99–101

    Google Scholar 

  53. Oró E, Cabeza LF, Farid MM (2013) Experimental and numerical analysis of a chilly bin incorporating phase change material. Appl Therm Eng 58(1–2):61–67

    Google Scholar 

  54. Oró E, De Gracia A, Cabeza LF (2013) Active phase change material package for thermal protection of ice cream containers. Int J Refrig 36(1):102–109

    Google Scholar 

  55. Leducq D, Ndoye FT, Alvarez G (2015) Phase change material for the thermal protection of ice cream during storage and transportation. Int J Refrig 52:133–139

    Google Scholar 

  56. Fioretti R, Principi P, Copertaro B (2016) A refrigerated container envelope with a PCM (Phase Change Material) layer: experimental and theoretical investigation in a representative town in central Italy. Energy Convers Manage 122:131–141

    Google Scholar 

  57. Arjenaki NO, Soltanizadeh N, Hamdami N (2018) Designing an active phase change material package for thermal and qualitative protection of meat. Food Packag Shelf Life 21(July):2019

    Google Scholar 

  58. Mousazade A, Rafee R, Valipour MS (2020) Thermal performance of cold panels with phase change materials in a refrigerated truck. Int J Refrig 120:119–126

    CAS  Google Scholar 

  59. Xiaofeng X, Xuelai Z (2021) Simulation and experimental investigation of a multi-temperature insulation box with phase change materials for cold storage. J Food Eng 292(August):110286

    Google Scholar 

  60. Huang L, Piontek U (2017) Improving performance of cold-chain insulated container with phase change material: an experimental investigation, Appl Sci (Switzerland), 7(12):2017

    Google Scholar 

  61. Aniruddha C, Devakar D (2019) Episode II: efficient cold chain transport using phase change materials (PCMs). PLUSS Advanced Technologies Pvt. Ltd., Gurgaon, Haryana

    Google Scholar 

  62. Dingley J, Thatcher N, Williams D (2019) A study of temperature control in different designs of emergency drug transport bags. Anaesthesia 74(7):868–874

    CAS  Google Scholar 

  63. Du J, Nie B, Zhang Y, Du Z, Wang L, Ding Y (2020) Cooling performance of a thermal energy storage-based portable box for cold chain applications. J Energy Storage 28(January):101238

    Google Scholar 

  64. Zhao Y, Zhang X, Xu X, Zhang S (2020) Development of composite phase change cold storage material and its application in vaccine cold storage equipment. J Energy Storage 30(April):101455

    Google Scholar 

  65. Sharma A, Chen C (2009) Solar water heating system with phase change materials. Int Rev Chem Eng (I. RE. CH. E.), 1(4):297–307

    Google Scholar 

  66. Salunkhe PB, Jaya Krishna D (2017) Investigations on latent heat storage materials for solar water and space heating applications. J Energy Storage 12:243–260

    Google Scholar 

  67. Prakash J, Garg HP, Datta G (1985) A solar water heater with a built-in latent heat storage. Energy Convers Manage 25(1):51–56

    Google Scholar 

  68. Bouadila S, Fteïti M, Oueslati MM, Guizani A, Farhat A (2014) Enhancement of latent heat storage in a rectangular cavity: Solar water heater case study. Energy Convers Manage 78:904–912

    CAS  Google Scholar 

  69. Kaygusuz K (1995) Experimental and theoretical investigation of latent heat storage for water based solar heating systems. Energy Convers Manage 36(5):315–323

    CAS  Google Scholar 

  70. Cabeza LF, Ibáñez M, Solé C, Roca J, Nogués M (2006) Experimentation with a water tank including a PCM module. Sol Energy Mater Sol Cells 90(9):1273–1282

    CAS  Google Scholar 

  71. Al-Hinti I, Al-Ghandoor A, Maaly A, Abu Naqeera I, Al-Khateeb Z, Al-Sheikh O (2010) Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems. Energy Conver Manage 51(8):1735–1740

    Google Scholar 

  72. Porteiro J, Míguez J, Crespo B, de Lara J, Pousada J (2016) On the behavior of different PCMs in a hot water storage tank against thermal demands. Materials 9(3):213

    Google Scholar 

  73. Kumar PM, Mylsamy K (2020) A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater. Renew Energy 162:662–676

    CAS  Google Scholar 

  74. Manirathnam AS, Dhanush Manikandan MK, Hari Prakash R, Kamesh Kumar B, Deepan Amarnath M (2020) Experimental analysis on solar water heater integrated with Nano composite phase change material (SCi and CuO). Mater Today: Proceed

    Google Scholar 

  75. Barba A, Spiga M (2003) Discharge mode for encapsulated PCMs in storage tanks. Sol Energy 74(February):141–148

    CAS  Google Scholar 

  76. Afshan ME, Selvakumar AS, Velraj R, Rajaraman R (2020) Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications. Renew Energy 148:876–888

    CAS  Google Scholar 

  77. Mettawee EBS, Assassa GMR (2006) Experimental study of a compact PCM solar collector. Energy 31(14):2958–2968

    Google Scholar 

  78. Xie L, Tian L, Yang L, Lv Y, Li Q (2017) Review on application of phase change material in water tanks. Adv Mech Eng 9(7):1–13

    Google Scholar 

  79. Tyagi VV, Panwar NL, Rahim NA, Kothari R (2012) Review on solar air heating system with and without thermal energy storage system. Renew Sustain Energy Rev 16(4):2289–2303

    CAS  Google Scholar 

  80. Enibe SO (2003) Thermal analysis of a natural circulation solar air heater with phase change material energy storage, 28(14)

    Google Scholar 

  81. Moradi R, Kianifar A, Wongwises S (2017) Optimization of a solar air heater with phase change materials: experimental and numerical study. Exp Thermal Fluid Sci 89(January):41–49

    CAS  Google Scholar 

  82. El Khadraoui A, Bouadila S, Kooli S, Guizani A, Farhat A (2016) Solar air heater with phase change material: an energy analysis and a comparative study. Appl Therm Eng 107:1057–1064

    Google Scholar 

  83. Karthikeyan S, Velraj R (2012) Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers—a comparison between various mathematical models. Int J Therm Sci 60:153–160

    CAS  Google Scholar 

  84. Esakkimuthu S, Hassabou AH, Palaniappan C, Spinnler M, Blumenberg J, Velraj R (2013) Experimental investigation on phase change material based thermal storage system for solar air heating applications. Sol Energy 88:144–153

    CAS  Google Scholar 

  85. Bouadila S, Kooli S, Lazaar M, Skouri S, Farhat A (2013) Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Appl Energy 110:267–275

    Google Scholar 

  86. Arfaoui N, Bouadila S, Guizani A (2017) A highly efficient solution of off-sunshine solar air heating using two packed beds of latent storage energy. Sol Energy 155:1243–1253

    Google Scholar 

  87. Charvát P, Klimeš L, Ostrý M (2014) Numerical and experimental investigation of a PCM-based thermal storage unit for solar air systems. Energy Build 68(PARTA):488–497

    Google Scholar 

  88. Lin W, Ma Z, Ren H, Gschwander S, Wang S (2019) Multi-objective optimisation of thermal energy storage using phase change materials for solar air systems. Renew Energy 130:1116–1129

    Google Scholar 

  89. Saxena A, Verma P, Srivastava G, Kishore N (2020) Design and thermal performance evaluation of an air heater with low cost thermal energy storage. Appl Thermal Eng 167(November):114768

    Google Scholar 

  90. Saxena A, Agarwal N, Cuce E (2020) Thermal performance evaluation of a solar air heater integrated with helical tubes carrying phase change material. J Energy Storage 30(April):101406

    Google Scholar 

  91. Jawad QA, Mahdy AMJ, Khuder AH, Chaichan MT (2020) Improve the performance of a solar air heater by adding aluminum chip, paraffin wax, and nano-SiC. Case Stud Thermal Eng 19:100622

    Google Scholar 

  92. Carmona M, Rincón A, Gulfo L (2020) Energy and exergy model with parametric study of a hot water storage tank with PCM for domestic applications and experimental validation for multiple operational scenarios. Energy Convers Manage 222(July):113189

    Google Scholar 

  93. Shalaby SM, Kabeel AE, Moharram BM, Fleafl AH (2020) Experimental study of the solar water heater integrated with shell and finned tube latent heat storage system. J Energy Storage 31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod B. Salunkhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Salunkhe, P.B., Devanuri, J.K. (2022). Containers for Thermal Energy Storage. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_13

Download citation