Skip to main content

Hydrogen Encapsulation and Storage as an Alternative Energy Source

  • 162 Accesses

Part of the Composites Science and Technology book series (CST)

Abstract

Regarding the fundamental role of energy in human life and the survival of all creatures on Earth, a meticulous investigation of the challenge of energy is of great importance to scientists. This chapter first introduces the necessities of the development of renewable energy and the crucial difficulties in using nonrenewable resources of energy. It then explains the brilliant characteristics of hydrogen as an alternative resource of energy and the most current methods of harvesting and storing hydrogen. Further, the role of nanotechnology in the recent advancement of hydrogen will be comprehensively discussed. By the end of each section, recent researches in hydrogen encapsulation by various methods and materials will be represented.

Keywords

  • Hydrogen storage
  • Encapsulation
  • Nanostructures
  • Adsorption
  • Energy

This chapter reviews on containers for hydrogen encapsulation and storage as an alternative energy source.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_12
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

(Reproduced by permission of Journal of Power Sources)

Fig. 4
Fig. 5

(Reproduced by permission of the ACS applied nanomaterials)

Fig. 6
Fig. 7

(Reproduced by permission of Phys. E Low-Dimensional Syst. Nanostructures)

Notes

  1. 1.

    World Commission on Environment and Development Definition.

  2. 2.

    Great power is a country that is known as possessing the expertise and capability to exert its supreme influence on a worldwide scale.

  3. 3.

    Green House Gas.

  4. 4.

    Accelerated Processing Unit.

  5. 5.

    Department of Energy (US).

References

  1. Østergaard PA et al (2020) Sustainable development using renewable energy technology. Renew Energy 146:2430–2437

    Google Scholar 

  2. Urbaniec K et al (2017) A holistic approach to sustainable development of energy, water and environment systems. J Clean Prod 155:1–11

    Google Scholar 

  3. Nerini FF et al (2018) Mapping synergies and trade-offs between energy and the sustainable development goals and the sustainable development goals. Nat Energy 3:10–15

    Google Scholar 

  4. Waas T et al (2010) University research for sustainable development: definition and characteristics explored. J Clean Prod 18:629–636

    Google Scholar 

  5. Ukko J et al (2019) Sustainable development: implications and definition for open sustainability. Sustain Dev 27:321–336

    Google Scholar 

  6. An Q et al (2018) Dependency network of international oil trade before and after oil price drop. Energy 165:102–1033

    Google Scholar 

  7. Wang Q et al (2018) China’s dependency on foreign oil will exceed 80% by 2030: developing a novel NMGM-ARIMA to forecast China’s foreign oil dependence from two dimensions. Energy 163:151–167

    Google Scholar 

  8. Shahbaz M et al (2017) Dynamics of electricity consumption, oil price and economic growth: global perspective. Energy Policy 108:256–270

    Google Scholar 

  9. Huang Y et al (2020) The role of forest resources, mineral resources, and oil extraction in economic progress of developing Asian economies. Res Policy 69:101878

    Google Scholar 

  10. Johnston JE et al (2019) Impact of upstream oil extraction and environmental public health: a review of the evidence. Sci Total Environ 657:187–199

    CAS  Google Scholar 

  11. Ramirez IM et al (2017) Contamination by oil crude extraction—refinement and their effects on human health. Environ Pollut 231:415–425

    CAS  Google Scholar 

  12. Noh SR et al (2019) Hebei Spirit oil spill and its long-term effect on children’s asthma symptoms. Environ Pollut 248:286–294

    CAS  Google Scholar 

  13. Zeng S et al (2017) A review of renewable energy investment in the BRICS countries: history, models, problems and solutions. Renew Sust Energ Rev 74:860–872

    Google Scholar 

  14. Shirely R et al (2013) Renewable energy sector development in the Caribbean: current trends and lessons from history. Energy Policy 57:244–252

    Google Scholar 

  15. Kalogirou SA (2005) Seawater desalination using renewable energy sources. Prog Energy Combust Sci 31:242–281

    CAS  Google Scholar 

  16. Panwar NL et al (2011) Role of renewable energy sources in environmental protection: a review. Renew Sust Energ Rev 15:1513–1524

    Google Scholar 

  17. Koroneos K et al (2003) Exergy analysis of renewable energy sources. Renew Energy 28:295–310

    CAS  Google Scholar 

  18. Waheed R et al (2018) Forest, agriculture, renewable energy, and CO2 emission. J Clean Prod 172:4231–4238

    Google Scholar 

  19. Menyah K et al (2010) CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 38:2911–2915

    CAS  Google Scholar 

  20. Jaforullah M et al (2015) Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence. Energy Econ 49:711–717

    Google Scholar 

  21. Armaroli N et al (2006) The future of energy supply: challenges and opportunities. Angew Chem 46:52–66

    Google Scholar 

  22. Narbel PA et al (2014) Estimating the cost of future global energy supply. Renew Sust Energ Rev 34:91–97

    Google Scholar 

  23. Nojavan S et al (2017) Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug-in electric vehicles. Energy Convers Manag 136:404–417

    CAS  Google Scholar 

  24. Abe JO et al (2019) Hydrogen energy, economy and storage: review and recommendation. Int J Hydrog Energy 44:15072–15086

    CAS  Google Scholar 

  25. Lagorse J et al (2008) Energy cost analysis of a solar-hydrogen hybrid energy system for stand-alone applications. Int J Hydrog Energy 33:2871–2879

    CAS  Google Scholar 

  26. Salvi BL et al (2015) Sustainable development of road transportation sector using hydrogen energy system. Renew Sust Energ Rev 51:1132–1155

    CAS  Google Scholar 

  27. Winter C et al (2009) Hydrogen energy—abundant, efficient, clean: a debate over the energy-system-of-change. Int J Hydrog Energy 34:S1–S52

    CAS  Google Scholar 

  28. Tian F et al (2005) A hydrogen-rich early earth atmosphere. Science 308:1014–1017

    CAS  Google Scholar 

  29. Wordsworth R et al (2013) Hydrogen-nitrogen greenhouse warming in earth’s early atmosphere. Science 339:64–67

    CAS  Google Scholar 

  30. Genda H et al (2008) Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194:42–52

    CAS  Google Scholar 

  31. Seiser R et al (2005) The influence of water on extinction and ignition of hydrogen and methane flames. P Combust Inst 30:407–414

    Google Scholar 

  32. Pizza G et al (2008) Dynamics of premixed hydrogen/air flames in microchannels. Combust Flame 152:433–450

    CAS  Google Scholar 

  33. Lamoureux N et al (2003) Laminar flame velocity determination for H2–air–He–CO2 mixtures using the spherical bomb method. Exp Therm 27:385–393

    CAS  Google Scholar 

  34. Das AK et al (2012) Ignition delay study of moist hydrogen/oxidizer mixtures using a rapid compression machine. Int J Hydrog Energy 37:6901–6911

    CAS  Google Scholar 

  35. Lei X et al (2020) Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: dependence on fuel type and oxidizer composition. Combust Flame 213:14–25

    Google Scholar 

  36. Zhen HS et al (2012) Effects of hydrogen concentration on the emission and heat transfer of a premixed LPG-hydrogen flame. Int J Hydrog Energy 37:6097–6105

    CAS  Google Scholar 

  37. Mardani A et al (2010) Effect of hydrogen on hydrogen–methane turbulent non-premixed flame under MILD condition. Int J Hydrog Energy 35:11324–11331

    CAS  Google Scholar 

  38. Choudhuri AR et al (2004) Intermediate radical concentrations in hydrogen–natural gas blended fuel jet flames. Int J Hydrog Energy 29:1293–1302

    CAS  Google Scholar 

  39. Dorofeev SB et al (1994) Evaluation of the hydrogen explosion hazard. Nucl Eng 148:305–316

    CAS  Google Scholar 

  40. Kim JS et al (2009) Behavior of buoyancy and momentum controlled hydrogen jets and flames emitted into the quiescent atmosphere. J Loss Prev Process Ind 22:943–949

    CAS  Google Scholar 

  41. Bauer W et al (1974) Helium and hydrogen re-emission during implantation of molybdenum, vanadium and stainless steel. J Nucl Mater 53:127–133

    CAS  Google Scholar 

  42. Sofronis P et al (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solids 37:317–350

    Google Scholar 

  43. Obara S (2019) Energy and exergy flows of a hydrogen supply chain with truck transportation of ammonia or methyl cyclohexane. Energy 174:844–860

    Google Scholar 

  44. Cho S et al (2019) Improved hydrogen recovery in microbial electrolysis cells using intermittent energy input. Int J Hydrog Energy 44:2253–2257

    CAS  Google Scholar 

  45. Thornton AW et al, Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem Mater 29:2844–2854

    Google Scholar 

  46. Liao S, Musyoka NM, Mathe M, Ren J, Langmi HW (2016) Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review. Int J Hydrogen Energy 42:289–311

    Google Scholar 

  47. Nagpal M, Kakkar R (2018) An evolving energy solution: intermediate hydrogen storage. Int J Hydrogen Energy 43:12168–12188

    CAS  Google Scholar 

  48. Nakagawa T et al (2014) Physical, structural, and dehydrogenation properties of ammonia borane in ionic liquids. RSC Adv 4:21681–21687

    CAS  Google Scholar 

  49. Purewal J et al (2012) Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J Phys Chem 116:20199–20212

    CAS  Google Scholar 

  50. Zheng J et al (2011) Development of high pressure gaseous hydrogen storage technologies. Int J Hydrogen Energy 37:1048–1057

    Google Scholar 

  51. Helmolt R Von, Eberle U (2007) Fuel cell vehicles: status 2007. J Power Sources 165:833–843

    Google Scholar 

  52. Barthelemy H, Weber M, Barbier F (2017) Science direct hydrogen storage: recent improvements and industrial perspectives. Int J Hydrogen Energy 42:7254–7262

    CAS  Google Scholar 

  53. Wang H et al (2009) High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance. Carbon 47:2259–2268

    CAS  Google Scholar 

  54. Ahluwalia RK, Peng JK (2008) Dynamics of cryogenic hydrogen storage in insulated pressure vessels for automotive applications. Int J Hydrogen Energy 33:4622–4633

    CAS  Google Scholar 

  55. Felderhoff M et al (2007) Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys 9:2643–2653

    CAS  Google Scholar 

  56. Haberbusch MS (2010) Development of No-Vent™ liquid hydrogen storage system for space applications. Cryogenics 50:541–548

    CAS  Google Scholar 

  57. Berry GD, Aceves M (1998) Onboard storage alternatives for hydrogen vehicles. Energy Fuels 12:49–55

    CAS  Google Scholar 

  58. Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy 34:5469–5474

    Google Scholar 

  59. Cacciola G et al (1984) Cyclohexane as a liquid phase carrier in hydrogen storage and transport. Int J Hydrogen Energy 9:411–419

    CAS  Google Scholar 

  60. Zheng J et al (2019) Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank. Energy Convers Manag 184:74–82

    CAS  Google Scholar 

  61. Chung CA, Ho C (2009) Thermal–fluid behavior of the hydriding and dehydriding processes in a metal hydride hydrogen storage canister. Int J Hydrogen Energy 34:4351–4364

    CAS  Google Scholar 

  62. Ahluwalia RK, Peng JK (2009) Automotive hydrogen storage system using cryo-adsorption on activated carbon. Int J Hydrogen Energy 34:5476–5487

    CAS  Google Scholar 

  63. Petitpas GA et al (2014) comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods. Int J Hydrogen Energy 39:10564–10584

    CAS  Google Scholar 

  64. Doroodian A et al (2010) Methylguanidinium borohydride: an ionic-liquid-based hydrogenstorage material. Angew Chem 49:1871–1873

    CAS  Google Scholar 

  65. Sahler S et al (2014) The role of ionic liquids in hydrogen storage. Chem Eur J 20:8934–8941

    CAS  Google Scholar 

  66. Fan L et al (2016) Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun 7:10667

    CAS  Google Scholar 

  67. Rowsell JLC, Yaghi OM (2006) J Am Chem Soc 128:1304

    CAS  Google Scholar 

  68. Chen B et al (2005) High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem 44:4745–4749

    CAS  Google Scholar 

  69. Darvish M et al (2012) Adsorption of hydrogen molecules onto Li-decorated titanium met-car cluster: a first-principles study’. Physica E 46:193–197

    Google Scholar 

  70. Litster S, Mclean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76

    CAS  Google Scholar 

  71. Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114:32–53

    CAS  Google Scholar 

  72. Wu J et al (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119

    CAS  Google Scholar 

  73. Ozarslan A (2012) Large-scale hydrogen energy storage in salt caverns. Int J Hydrogen Energy 37:14265–14277

    CAS  Google Scholar 

  74. Michaelis J et al (2014) Evaluation of large-scale hydrogen storage systems in the German energy sector. Fuel cells 14:517–524

    CAS  Google Scholar 

  75. Johnson TA et al (2011) Performance of a full-scale hydrogen-storage tank based on complex hydrides. Faraday Discuss 15:327–352

    Google Scholar 

  76. Klerke A et al (2008) Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 18:2304–2310

    CAS  Google Scholar 

  77. Otsuka K et al (2012) Hydrogen storage and production by redox of iron oxide for polymer electrolyte fuel cell vehicles. Int J Hydrogen Energy 37:14265–14277. Int. J. Hydrogen Energy 28:335–342 (2003)

    Google Scholar 

  78. Tzamalis G et al (2011) Techno-economic analysis of an autonomous power system integrating hydrogen technology as energy storage medium. Renew Energy 36:118–124

    CAS  Google Scholar 

  79. Amrouche SO et al (2016) Overview of energy storage in renewable energy systems. Int J Hydrogen Energy 41:20914–20927

    Google Scholar 

  80. Conibeer GJ et al (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems. Int J Hydrogen Energy 32:2703–2711

    CAS  Google Scholar 

  81. Ganji MD (2009) First-principles simulation of the encapsulation of molecular hydrogen in C120 nanocapsules. Physica E 41:1433–1438

    CAS  Google Scholar 

  82. Ganji MD et al (2009) Density functional theory calculations of hydrogen molecule adsorption on monolayer molybdenum and tungsten disulfide. Physica E 57:1433–1438

    Google Scholar 

  83. Ganji MD et al (2016) Computational design of multi-states monomolecular device using molecular hydrogen and C20 isomers. Phys Solid State 58:1476–1482

    CAS  Google Scholar 

  84. Ganji MD et al (2015) Theoretical insight into hydrogen adsorption onto graphene: a first-principles B3LYP-D3 study. Phys Chem Chem Phys 17:2504

    Google Scholar 

  85. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  86. Dillon AC et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–437

    CAS  Google Scholar 

  87. Chen P et al (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91

    CAS  Google Scholar 

  88. Yang RT (2000) Hydrogen storage by alkali-doped carbon nanotubes–revisited. Carbon 38:623–641

    CAS  Google Scholar 

  89. Kajiura H et al (2003) Hydrogen storage capacity of commercially available carbon materials at room temperature. Appl Phys Lett 82:1105

    CAS  Google Scholar 

  90. Ritschel M et al (2002) Hydrogen storage in different carbon nanostructures. Appl Phys Lett 80:2985

    CAS  Google Scholar 

  91. Hirscher M, Becher M (2006) J Nanosci Nanotechno 3:3

    Google Scholar 

  92. Froudakis GE (2002) Hydrogen interaction with carbon nanotubes: a review of ab initio studies. J Phys Cond Mat 14:453

    Google Scholar 

  93. Lochan RC, Head-Gordon M (2006) Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys 8:1357–1370

    CAS  Google Scholar 

  94. Froudakis GE (2001) Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake. Nano Lett 1:531–533

    CAS  Google Scholar 

  95. Ganji MD, Ahmadian N, Goodarzi M, Khorrami HA (2011) Molecular hydrogen interacting with Si-, S- and P-doped C 60 fullerenes and carbon nanotube. J Comput Theor Nanosci 8:1392–1399

    CAS  Google Scholar 

  96. Anikina E, Banerjee A, Beskachko V, Ahuja R (2019) Li-functionalized carbon nanotubes for hydrogen storage: importance of size effects Li-functionalized carbon nanotubes for hydrogen storage: importance of size effects. ACS Appl Nano Mater 5:3021–3030

    Google Scholar 

  97. Ganji MD (2009) Ab initio investigation of the possibility of formation of endohedral complexes between H2 molecules and B-, N- and Si-doped C60 fullerenes. Phys E Low-Dimens Syst Nanostruct 41:1406–1409

    CAS  Google Scholar 

  98. Han SS, Lee HM (2004) Adsorption properties of hydrogen on (10, 0) single-walled carbon nanotube through density functional theory. Carbon 42:2169–2177

    CAS  Google Scholar 

  99. Chopra NG et al (1995) Boron nitride nanotubes. Science 269:966–967

    CAS  Google Scholar 

  100. Wang P et al (2002) Hydrogen in mechanically prepared nanostructured h-BN: a critical comparison with that in nanostructured graphite. Appl Phys Lett 80:318

    CAS  Google Scholar 

  101. Ma R et al (2002) Hydrogen uptake in boron nitride nanotubes at room temperature. J Am Chem Soc 124:7672–7673

    CAS  Google Scholar 

  102. Tang C et al (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124:14550

    CAS  Google Scholar 

  103. Mpourmpakis G, Froudakis GE (2007) Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage?: an ab initio theoretical study. Catal Today 120:341

    CAS  Google Scholar 

  104. Javan MB, Ganji MD, Sabet M, Danesh N (2011) Incorporation of hydrogen molecules into carbon nitride heterofullerenes: an Ab initio study. J Comput Theor 8:1–5

    Google Scholar 

  105. Ganji MD, Abbaszadeh B, Ahaz B (2011) Hydrogen incorporation into BN fullerene-like nanostructures: a first-principles study. Phys E Low-Dimens Syst Nanostruct 44:290–297

    CAS  Google Scholar 

  106. Mavrandonakis A et al (2003) From pure carbon to silicon−carbon nanotubes: an Ab-initio study. Nano Lett 3:1481

    CAS  Google Scholar 

  107. Menon M et al (2004) Structure and stability of SiC nanotubes. Phys Rev B 69:115322

    Google Scholar 

  108. Pham-Huu C et al (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200:400–410

    CAS  Google Scholar 

  109. Sun XH et al (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464

    CAS  Google Scholar 

  110. Mpourmpakis G et al (2006) Nano Lett 61:581

    Google Scholar 

  111. Viculis LM et al (2003) Science 299:1361

    CAS  Google Scholar 

  112. Braga SF et al (2004) Structure and dynamics of carbon nanoscrolls. Nano Lett 4:881–884

    CAS  Google Scholar 

  113. Mpourmpakis G et al (2007) Carbon nanoscrolls: a promising material for hydrogen storage. Nano Lett 7:1893–1897

    CAS  Google Scholar 

  114. Braga SF (2007) Hydrogen storage in carbon nanoscrolls: an atomistic molecular dynamics study. Chem Phys Lett 441:78–82

    CAS  Google Scholar 

  115. Rowsell JLC et al (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chemie Int Ed 44:4670

    CAS  Google Scholar 

  116. Klontzas E et al (2007) Molecular hydrogen interaction with IRMOF-1: a multiscale theoretical study. J Phys Chem C 111:13635

    CAS  Google Scholar 

  117. Dimitrakakis GK et al (2008) Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett 8:3166

    CAS  Google Scholar 

  118. Tylianakis E et al (2010) Li-doped pillared graphene oxide: a graphene-based nanostructured material for hydrogen storage. J Phys Chem Lett 1:2459–2464

    CAS  Google Scholar 

  119. Klontzas E et al (2008) Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. Nano Lett 8:1572

    Google Scholar 

  120. Khosravi A, Fereidoon A, Ahangari MG, Ganji MD, Emami SN (2014) First-principles vdW-DF study on the enhanced hydrogen storage capacity of Pt-adsorbed graphene. J Mol Model 20:2230

    Google Scholar 

  121. Ganji MD, Emami SN, Khosravi A, Abbasi M (2015) Si-decorated graphene: a promising media for molecular hydrogen storage. Appl Surf Sci 332:105–111

    CAS  Google Scholar 

  122. Wang Q et al (1999) Computer simulations of hydrogen adsorption on graphite nanofibers. J Phys Chem 110:281–577

    Google Scholar 

  123. Han SS et al (2009) Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chem Soc Rev 38:1460–1476

    CAS  Google Scholar 

  124. Zhao J et al (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13:195

    CAS  Google Scholar 

  125. Tylianakis E et al (2011) Porous nanotube network: a novel 3-D nanostructured material with enhanced hydrogen storage capacity. Chem Commun 47:2303–2305

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ganji, M.D., Rahmanzadeh, A. (2022). Hydrogen Encapsulation and Storage as an Alternative Energy Source. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_12

Download citation