Skip to main content

Containers with Lubricating Agents for Friction and Wear

  • 166 Accesses

Part of the Composites Science and Technology book series (CST)

Abstract

The technology of encapsulation has been explored in several research fields as they offer an extensive variety of conceivable benefits, ease of encapsulating an extensive variety of core materials, and the opportunity to combine the properties of dissimilar types of materials. This chapter describes the importance of tribology and reviews work related to friction and wear behavior of polymers and other composites that contain encapsulated lubricating agents. It is observed from previous research that encapsulated particle concentration varies from 0 to 30 wt%. Wear and friction properties are observed to be favorable up to 10 wt% of particle concentration, and later an adverse outcome is observed.

Keywords

  • Encapsulation
  • Friction
  • Wear
  • Lubrication and polymer composites

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-8146-2_11
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-8146-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Voloshin Y, Belaya I, Krämer R (2016) The encapsulation phenomenon: synthesis, reactivity and applications of caged Ions and molecules. Springer

    Google Scholar 

  2. Lakkis JM (2007) Encapsulation and controlled release technologies in food systems. Wiley Online Library

    Google Scholar 

  3. Gaonkar AG, Vasisht N, Khare AR, Sobel R (2014) Microencapsulation in the food industry: a practical implementation guide. Elsevier

    Google Scholar 

  4. Benita S (2005) Microencapsulation: methods and industrial applications. CRC Press

    Google Scholar 

  5. Knowles A (2012) Chemistry and technology of agrochemical formulations. Springer Science & Business Media

    Google Scholar 

  6. Rosen M (2005) Delivery system handbook for personal care and cosmetic products: technology, applications and formulations. William Andrew

    Google Scholar 

  7. Nelson G (1991) Microencapsulates in textile coloration and finishing. Rev Prog Color Relat Top 21(1):72–85

    CAS  Google Scholar 

  8. Christensen FN, Bertelsen P (1997) Qualitative description of the Wurster-based fluid-bed coating process. Drug Dev Ind Pharm 23(5):451–463

    CAS  Google Scholar 

  9. Šiler-Marinković S, Bezbradica D, Škundrić P (2006) Microencapsulation in the textile industry. Chem Ind Chem Eng Q 12(1):58–62

    Google Scholar 

  10. Green BK, Lowell S (1956) Manifold record material. Google Patents

    Google Scholar 

  11. Xiao Z, Liu W, Zhu G, Zhou R, Niu Y (2014) A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. J Sci Food Agric 94(8):1482–1494

    CAS  Google Scholar 

  12. Alagusundaram M, Chetty MS, Umashankari K, Badarinath AV, Lavanya C, Ramkanth S (2009) Microspheres as a novel drug delivery system—a review. Int J Chem Tech Res 1(3):526–534

    CAS  Google Scholar 

  13. Andersson C, Järnström L, Fogden A, Mira I, Voit W, Zywicki S, Bartkowiak A (2009) Preparation and incorporation of microcapsules in functional coatings for self-healing of packaging board. Packag Technol Sci Int J 22(5):275–291

    CAS  Google Scholar 

  14. Ghosh SK (2006) Functional coatings and microencapsulation: a general perspective. Funct Coat 1–28

    Google Scholar 

  15. Wang W, Xu L, Li X, Yang Y, An E (2014) Self-healing properties of protective coatings containing isophorone diisocyanate microcapsules on carbon steel surfaces. Corros Sci 80:528–535

    CAS  Google Scholar 

  16. Grigoriev D, Akcakayiran D, Schenderlein M, Shchukin D (2014) Protective organic coatings with anticorrosive and other feedback-active features: micro- and nanocontainers-based approach. Corrosion 70(5):446–463

    CAS  Google Scholar 

  17. Szalóki-Dorkó L (2017) Encapsulations nanotechnology in the agri-food industry, vol 2. Acta Aliment 46(1):123–126

    Google Scholar 

  18. Fu F, Hu L (2017) Temperature sensitive colour-changed composites. In: Advanced high strength natural fibre composites in construction. Elsevier, pp 405–423

    Google Scholar 

  19. Mang T, Bobzin K, Bartels T (2011) Industrial tribology: tribosystems, friction, wear and surface engineering, lubrication. Wiley

    Google Scholar 

  20. Bhushan B (2011) Nanotribology and nanomechanics I: measurement techniques and nanomechanics, vol 1. Springer Science & Business Media

    Google Scholar 

  21. Yamaguchi Y (1990) Tribology of plastic materials: their characteristics and applications to sliding components, vol 16. Elsevier

    Google Scholar 

  22. Hutchings I, Shipway P (2017) Tribology: friction and wear of engineering materials. Butterworth-Heinemann

    Google Scholar 

  23. Czichos H, Klaffke D, Santner E, Woydt M (1995) Advances in tribology: the materials point of view. Wear 190(2):155–161

    CAS  Google Scholar 

  24. Wen S, Huang P (2012) Principles of tribology. Wiley Online Library

    Google Scholar 

  25. Mitchell K, Neville A, Walker GM, Sutton MR, Cayre OJ (2018) Synthesis and tribological testing of poly (methyl methacrylate) particles containing encapsulated organic friction modifier. Tribol Int 124:124–133

    CAS  Google Scholar 

  26. Williamson T, Buren MFV, Massucco AA, Lindstrom RS (1993) Cast material with encapsulated lubricant. Google Patents

    Google Scholar 

  27. Xu S (2020) Preparation and tribological behaviour of poly (methyl methacrylate) (PMMA) microcapsules containing friction modifiers. J Microencapsul 37(4):314–323

    CAS  Google Scholar 

  28. Li H, Ma Y, Li Z, Ji J, Zhu Y, Wang H (2017) High temperature resistant polysulfone/silica double-wall microcapsules and their application in self-lubricating polypropylene. RSC Adv 7(79):50328–50335

    Google Scholar 

  29. Li H, Wang Q, Li M, Cui Y, Zhu Y, Wang B, Wang H (2016) Preparation of high thermal stability polysulfone microcapsules containing lubricant oil and its tribological properties of epoxy composites. J Microencapsul 33(3):286–291

    CAS  Google Scholar 

  30. Li H, Chen S, Li Z, Feng Y, Zhang M (2020) Preparation of PU/GO hybrid wall microcapsules and their self-lubricating properties for epoxy composites. Colloids Surf A Physicochem Eng Asp 124729

    Google Scholar 

  31. Khun NW, Zhang H, Yang J, Liu E (2013) Mechanical and tribological properties of epoxy matrix composites modified with microencapsulated mixture of wax lubricant and multi-walled carbon nanotubes. Friction 1(4):341–349

    CAS  Google Scholar 

  32. Zhang J, Yang S, Chen Z, Wu H, Zhao J, Jiang Z (2019) Graphene encapsulated SiC nanoparticles as tribology-favoured nanofillers in aluminium composite. Compos B Eng 162:445–453

    CAS  Google Scholar 

  33. Yang M, Zhu X, Ren G, Men X, Guo F, Li P, Zhang Z (2015) Tribological behaviors of polyurethane composite coatings filled with ionic liquid core/silica gel shell microcapsules. Tribol Lett 58(1):9

    CAS  Google Scholar 

  34. Khun NW, Zhang H, Yang J, Liu E (2012) Tribological performance of silicone composite coatings filled with wax-containing microcapsules. Wear 296(1–2):575–582

    CAS  Google Scholar 

  35. Guo QB, Lau KT, Rong MZ, Zhang MQ (2010) Optimization of tribological and mechanical properties of epoxy through hybrid filling. Wear 269(1–2):13–20

    CAS  Google Scholar 

  36. Mu B, Li X, Yang B, Cui J, Wang X, Guo J, Bao X, Chen L (2020) Microstructure and tribological properties of epoxy composites modified by methyl silicone oil-loaded microcapsules and/or reinforced with potassium hexatitanate whiskers. High Perform Polym 32(3):334–343

    CAS  Google Scholar 

  37. Mu B, Li X, Yang B, Cui J, Wang X, Guo J, Bao X, Chen L (2017) Tribological behaviors of polyurethane composites containing self-lubricating microcapsules and reinforced by short carbon fibers. J Appl Polym Sci 134(43):45331

    Google Scholar 

  38. Zhai W, Lu W, Chen Y, Liu X, Zhou L, Lin D (2019) Gas-atomized copper-based particles encapsulated in graphene oxide for high wear-resistant composites. Compos B Eng 157:131–139

    CAS  Google Scholar 

  39. Yang Z, Guo Z, Yuan C (2019) Effects of MoS2 microencapsulation on the tribological properties of a composite material in a water-lubricated condition. Wear 432:102919

    Google Scholar 

  40. Yang Z, Guo Z, Yang Z, Wang C, Yuan C Study on tribological properties of a novel composite by filling microcapsules into UHMWPE matrix for water lubrication. Tribol Int 153:106629

    Google Scholar 

  41. Khun N, Zhang H, Yue C, Yang J (2014) Self-lubricating and wear resistant epoxy composites incorporated with microencapsulated wax. J Appl Mech 81(7)

    Google Scholar 

  42. Bandeira P, Monteiro J, Baptista AM, Magalhães FD (2015) Tribological performance of PTFE-based coating modified with microencapsulated [HMIM][NTf 2] ionic liquid. Tribol Lett 59(1):13

    Google Scholar 

  43. Imani A, Zhang H, Zhao J, Yang J, Owais M, Zhang Z (2017) Significant improvements in wear and friction of epoxy composites filled with graphene nanoplatelets and wax-containing microcapsules. In: ICCM international conferences on composite materials

    Google Scholar 

  44. Liu P, Huang T, Lu R, Li T (2012) Tribological properties of modified carbon fabric/polytetrafluoroethylene composites. Wear 289:17–25

    CAS  Google Scholar 

  45. Sharma M, Bijwe J, Mitschang P (2011) Abrasive wear studies on composites of PEEK and PES with modified surface of carbon fabric. Tribol Int 44(2):81–91

    CAS  Google Scholar 

  46. Ye XJ, Song YX, Zhu Y, Yang GC, Rong MZ, Zhang MQ (2014) Self-healing epoxy with ultrafast and heat-resistant healing system processable at elevated temperature. Compos Sci Technol 104:40–46

    CAS  Google Scholar 

  47. Ren G, Zhang Z, Zhu X, Men X, Liu W (2014) Influence of lubricant filling on the dry sliding wear behaviors of hybrid PTFE/Nomex fabric composite. J Mater Sci 49(10):3716–3724

    CAS  Google Scholar 

  48. Ren G, Zhang Z, Zhu X, Yang M, Men X, Jiang W, Liu W (2015) WS 2-filled hybrid PTFE/Nomex fabric composites with improved antiwear property. J Mater Sci 50(3):1065–1070

    CAS  Google Scholar 

  49. Liu B, Pei X, Wang Q, Sun X, Wang T (2011) Effects of proton and electron irradiation on the structural and tribological properties of MoS2/polyimide. Appl Surf Sci 258(3):1097–1102

    CAS  Google Scholar 

  50. Shivamurthy B, Bhat KU, Anandhan S (2013) Mechanical and sliding wear properties of multi-layered laminates from glass fabric/graphite/epoxy composites. Mater Des 44:136–143

    CAS  Google Scholar 

  51. Dubey MK, Bijwe J, Ramakumar S (2013) PTFE based nano-lubricants. Wear 306(1–2):80–88

    Google Scholar 

  52. Suresha B, Ramesh B, Subbaya K, Kumar BR, Chandramohan G (2010) Influence of graphite filler on two-body abrasive wear behaviour of carbon fabric reinforced epoxy composites. Mater Des 31(4):1833–1841

    CAS  Google Scholar 

  53. Song H-J, Zhang Z-Z, Men X-H (2008) The tribological behaviors of the polyurethane coating filled with nano-SiO2 under different lubrication conditions. Compos A Appl Sci Manuf 39(2):188–194

    Google Scholar 

  54. Ren G, Zhang Z, Zhu X, Men X, Jiang W, Liu W (2014) Tribological behaviors of hybrid PTFE/nomex fabric/phenolic composite under dry and water-bathed sliding conditions. Tribol Trans 57(6):1116–1121

    CAS  Google Scholar 

  55. Martin J-M, Grossiord C, Le Mogne T, Igarashi J (2000) Transfer films and friction under boundary lubrication. Wear 245(1–2):107–115

    CAS  Google Scholar 

  56. Saurín N, Sanes J, Bermúdez M (2014) Effect of graphene and ionic liquid additives on the tribological performance of epoxy resin. Tribol Lett 56(1):133–142

    Google Scholar 

  57. Sanes J, Carrión F, Bermúdez M (2010) Effect of the addition of room temperature ionic liquid and ZnO nanoparticles on the wear and scratch resistance of epoxy resin. Wear 268(11–12):1295–1302

    CAS  Google Scholar 

  58. Mąka H, Spychaj T, Kowalczyk K (2014) Imidazolium and deep eutectic ionic liquids as epoxy resin crosslinkers and graphite nanoplatelets dispersants. J Appl Polym Sci 131(12)

    Google Scholar 

  59. Guo QB, Lau KT, Zheng BF, Rong MZ, Zhang MQ (2009) Imparting ultra-low friction and wear rate to epoxy by the incorporation of microencapsulated lubricant. Macromol Mater Eng 294(1):20–24

    CAS  Google Scholar 

  60. Zhang G, Xie G, Si L, Wen S, Guo D (2017) Ultralow friction self-lubricating nanocomposites with mesoporous metal-organic frameworks as smart nanocontainers for lubricants. ACS Appl Mater Interfaces 9(43):38146–38152

    CAS  Google Scholar 

  61. Imani A, Zhang H, Owais M, Zhao J, Chu P, Yang J, Zhang Z (2018) Wear and friction of epoxy based nanocomposites with silica nanoparticles and wax-containing microcapsules. Compos A Appl Sci Manuf 107:607–615

    CAS  Google Scholar 

  62. Aruna S, Arunima S, Latha S, William Grips V (2016) Preparation of oil-encapsulated microcapsules and tribological property of Ni composite coating. Mater Manuf Processes 31(1):107–111

    CAS  Google Scholar 

  63. Win Khun N, Zhang H, Tang X-z, Yoon Yue C, Yang J (2014) Short carbon fiber-reinforced epoxy tribomaterials self-lubricated by wax containing microcapsules. J Appl Mech 81(12)

    Google Scholar 

  64. Khun N, Zhang H, Sun D, Yang J (2016) Tribological behaviors of binary and ternary epoxy composites functionalized with different microcapsules and reinforced by short carbon fibers. Wear 350:89–98

    Google Scholar 

  65. Khun NW, Sun D, Huang MX, Yang JL, Yue CY (2014) Wear resistant epoxy composites with diisocyanate-based self-healing functionality. Wear 313(1–2):19–28

    CAS  Google Scholar 

  66. Sun D, Chong YB, Chen K, Yang J (2018) Chemically and thermally stable isocyanate microcapsules having good self-healing and self-lubricating performances. Chem Eng J 346:289–297

    CAS  Google Scholar 

  67. Li H, Wang Q, Wang H, Cui Y, Zhu Y, Wang B (2016) Fabrication of thermally stable polysulfone microcapsules containing [EMIm][NTf2] ionic liquid for enhancement of in situ self-lubrication effect of epoxy. Macromol Mater Eng 301(12):1473–1481

    CAS  Google Scholar 

  68. Minami I (2009) Ionic liquids in tribology. Molecules 14(6):2286–2305

    CAS  Google Scholar 

  69. Ye C, Liu W, Chen Y, Yu L (2001) Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun 21:2244–2245

    Google Scholar 

  70. Liu W, Ye C, Gong Q, Wang H, Wang P (2002) Tribological performance of room-temperature ionic liquids as lubricant. Tribol Lett 13(2):81–85

    CAS  Google Scholar 

  71. Bermúdez M-D, Jiménez A-E, Sanes J, Carrión F-J (2009) Ionic liquids as advanced lubricant fluids. Molecules 14(8):2888–2908

    Google Scholar 

  72. Zhou F, Liang Y, Liu W (2009) Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev 38(9):2590–2599

    CAS  Google Scholar 

  73. Chen DX, OuYang XK, Wang YG, Yang LY, Yu D (2012) Polysulfone microcapsules containing ionic liquid. Advanced Materials Research. Trans Tech Publ, pp 273–276

    Google Scholar 

  74. Gao H, Xing J, Xiong X, Li Y, Li W, Liu Q, Wu Y, Liu H (2008) Immobilization of ionic liquid [BMIM][PF6] by spraying suspension dispersion method. Ind Eng Chem Res 47(13):4414–4417

    CAS  Google Scholar 

  75. Weiss E, Dutta B, Kirschning A, Abu-Reziq R (2014) BMIm-PF6@ SiO2 microcapsules: particulated ionic liquid as a new material for the heterogenization of catalysts. Chem Mater 26(16):4781–4787

    CAS  Google Scholar 

  76. Yang W, Lu Y, Xiang Z, Luo G (2007) Monodispersed microcapsules enclosing ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate. React Funct Polym 67(1):81–86

    CAS  Google Scholar 

  77. Armada S, Schmid R, Equey S, Fagoaga I, Espallargas N (2013) Liquid-solid self-lubricated coatings. J Therm Spray Technol 22(1):10–17

    CAS  Google Scholar 

  78. Espallargas N, Vitoux L, Armada S (2013) The wear and lubrication performance of liquid–solid self-lubricated coatings. Surf Coat Technol 235:342–353

    CAS  Google Scholar 

  79. Li H, Shi N, Ji J, Wang H (2018) Preparation of microcapsules containing double-component lubricant and self-lubricating performance of polymer composites. Mater Res Express 5(5):055302

    Google Scholar 

  80. Li H, Ma Y, Cui Y, Li Z, Wang H (2019) Ultralow tribological properties of polymer composites containing [BMIm] PF6-loaded multilayer wall microcapsule. Macromol Mater Eng 304(4):1800791

    Google Scholar 

  81. Win Khun N, Zhang H, Yang J (2015) Wear resistance of polymers with encapsulated epoxy-amine self-healing chemistry. J Appl Mech 82(5)

    Google Scholar 

  82. Yang Z, Guo Z, Yuan C (2019) Tribological behavior of polymer composites functionalized with various microcapsule core materials. Wear 426:853–861

    Google Scholar 

  83. Li H, Cui Y, Wang H, Zhu Y, Wang B (2017) Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids Surf A 518:181–187

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ain, Q.U., Ashrith, H.S., Singh, M.K., Jeevan, T.P. (2022). Containers with Lubricating Agents for Friction and Wear. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_11

Download citation