Skip to main content

Polymer Based Microcapsules for Encapsulation

  • Chapter
  • First Online:
Micro- and Nano-containers for Smart Applications

Abstract

Controlled release of active ingredients using polymer microcapsules is a promising approach for many consumer products, personal care products, agrochemical formulations, paints, and coatings. An ideal encapsulation matrix for such applications should be non-toxic in nature, provide a robust mechanical wall and yet allow controlled diffusion, have good adhesion to the applied substrate and be cost effective. This book chapter provides a brief overview of different microencapsulation methods for polymer based microcapsules, its properties and applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fanger GO (1974) Microencapsulation a brief history and introduction. In: Vandegaer JE (ed) Microencapsulation. Springer, Boston, MA, pp 1–20

    Google Scholar 

  2. Green BK (1960) U.S. Reissue 24,899

    Google Scholar 

  3. Green BK (1957) Schleicher L, U.S. 2800457

    Google Scholar 

  4. Lin CY, Lin SJ, Yang YC, Wang DY, Cheng HF, Yeh MK (2015) Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases. Human Vaccines Immunotherapeutics 11(3):650–656

    Google Scholar 

  5. Dragostin I, Dragostin O, Pelin AM, Grigore C, Zamfir CL (2017) The importance of polymers for encapsulation process and for enhanced cellular functions. J Macromol Sci Part A 54(7):489–493

    CAS  Google Scholar 

  6. Abdelkader H, Hussain SA, Abdullah N, Kmaruddin S (2018) Review on micro-encapsulation with Chitosan for pharmaceuticals applications. MOJ Current Res Rev 1(2):77–84

    Google Scholar 

  7. Sevault A, Kauko H, Bugge M, Banasiak K, Haugen N, Skreiberg O (2017) Phase change materials for thermal energy storage in low- and high-temperature applications: a state-of-the-art. Report, SINTEF Energy Research

    Google Scholar 

  8. Mishra MK (2016) Overview of encapsulation and controlled release. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 3–22

    Google Scholar 

  9. Theis C (2005) Microencapsulation, Encyclopedia of polymer science and technology. Wiley

    Google Scholar 

  10. Oakley J (2016) Process selection criteria. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 23–33

    Google Scholar 

  11. Sri Vajra Priya V, Roy HK, Jyothi N, Lakshmi Prasanthi N (2016) Polymers in Drug delivery technology, types of polymers and applications. Scholars Acad J Pharmacy 5(7):305–308

    Google Scholar 

  12. Masters K (1985) Spray drying handbook-, 4th edn. Wiley & Sons Inc., Publishers. New York, Halsted Press, p 696

    Google Scholar 

  13. Drusch S, Diekmann S (2016) Microencapsulation by spray drying. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 35–44

    Google Scholar 

  14. Re MI (2006) Formulating drug delivery systems by spray drying. Drying Technol 24:433–446

    CAS  Google Scholar 

  15. Rosenberg M, Kopelman IJ, Talmon Y (1990) Factors affecting retention in spray-drying microencapsulation of volatile materials. J Agric Food Chem 38:1288–1294

    CAS  Google Scholar 

  16. Re MI (1998) Microencapsulation by spray drying. Drying Technol 16(6):1195–1236

    CAS  Google Scholar 

  17. Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Linko P (2003) Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J Food Sci 68(7):2256–2262

    CAS  Google Scholar 

  18. Popplewell LM, Hans KT, Henson L, Lavallee CT, Wolff EJ, Wright M (2013) Spray-dried compositions capable of retaining volatile compounds and methods of producing the same. US 20130022728

    Google Scholar 

  19. Reineccius GA (2004) The spray drying of food flavors. Drying Technol 22(6):1289–1324

    Google Scholar 

  20. Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam N, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 3–29

    Google Scholar 

  21. Ermis D, Yuksel A (1999) Preparation of spray-dried microspheres of indomethacin and examination of the effects of coating on dissolution rates. J Microencapsul 16(3):315–324

    CAS  Google Scholar 

  22. Singh A, Van den Mooter G (2016) Spray drying formulations of amorphous solid dispersions. Adv Drug Deliv Rev 100:27–50

    CAS  Google Scholar 

  23. Pradhan R, Kim SY, Yong CS, Kim JO (2016) Preparation and characterization of spray-dried valsartan-loaded Eudragit® E PO solid dispersion microparticles. Asian J Pharm Sci 11(6):744–750

    Google Scholar 

  24. Vidgren P, Vidgren M, Arppe J, Hakuli T, Laine EE, Paronen P (1992) In vitro evaluation of spray-dried mucoadhesive microspheres for nasal administration. Drug Dev Ind Pharm 18(5):581–597

    CAS  Google Scholar 

  25. Acosta N, Sánchez E, Calderón L, Cordoba-Diaz M, Cordoba-Diaz D, Dom S, Heras A (2015) Physical stability studies of semi-solid formulations from natural compounds loaded with chitosan microspheres. Marine Drugs 13:5901–5919

    CAS  Google Scholar 

  26. Arpagaus C, Schafroth N (2009) Laboratory scale spray drying of biodegradable polymers. Respir Drug Deliv Eur 2:269–274

    Google Scholar 

  27. Wurster DE (1963) Granulating and coating process for uniform granules. US Patent No 3,089,824

    Google Scholar 

  28. Wurster DE (1965) Apparatus for the encapsulation of discrete particles. US Patent No 3,196,827

    Google Scholar 

  29. Wurster DE (1966) Particle coating apparatus. US Patent No 3,241,520

    Google Scholar 

  30. Wurster DE (1990), Particle-coating methods. In: Lieberman HA (ed) Pharmaceutical dosage forms: tablets, vol 3, rev 90. Marcel Dekker, New York, pp 161–197

    Google Scholar 

  31. Guignon B, Duquenoy A, Dumoulin ED (2002) Fluid bed encapsulation of particles: principles and practice. Drying Technol 20(2):419–447

    CAS  Google Scholar 

  32. Jones DM, Rajabi-Siahboomi AR (2017) Fluid bed technology, process robustness, and scale-up. In: Rajabi-Siahboomi A (eds) Multiparticulate drug delivery. advances in delivery science and technology. Springer, New York, NY

    Google Scholar 

  33. Frey CR (2016) Encapsulation via fluidized bed coating technology. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 35–44

    Google Scholar 

  34. Upjohn WE (1885) Process of making pills. US Patent No. 312041

    Google Scholar 

  35. Barrier P, Rousseau JY (1997) New fluid powder containing micro-encapsulated fish oil. French Patent No. 2758055A1

    Google Scholar 

  36. Gautam A, Patrick M, Dagerath ML (2007) Nutrition bar or other food product and process of making. Worldwide Patent No. 2006058634A1

    Google Scholar 

  37. Agrawal AM, Pandey P (2015) Scale up of pan coating process using quality by design principles. J Pharm Sci 104:3589–3611

    CAS  Google Scholar 

  38. Porter S, Sackett G, Liu L (2009) Development, optimization, and scale-up of process parameters: pan coating. In: Qiu Y, Chen Y, Zhang GGZ, Liu L, Porter WR (eds) Developing solid oral dosage forms. Academic Press, San Diego, California, pp 761–805

    Google Scholar 

  39. Ubbink J (2013) Flavour delivery systems. In: Kirk-Othmer (ed) Encyclopedia of chemical technology. Wiley and Sons, New York

    Google Scholar 

  40. Leister MD, Geilen T, Geissler T (2012) Twin-screw extruders for pharmaceutical hot-melt extrusion: Technology, techniques and practices. In: Douroumis D (ed) Hot-melt extrusion: pharmaceutical applications, 1st edn. Wiley, Chichester, U.K., pp 23–42

    Google Scholar 

  41. Patil H, Tiwari RV, Repka MA (2016) Encapsulation via hot-melt extrusion. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 213–233

    Google Scholar 

  42. Lu M, Guo Z, Li Y, Pang H, Lin L, Liu X, Pan X, Wu C (2014) Application of hot melt extrusion for poorly water-soluble drugs: limitations. Adv Future Prospects 20(3):369–387

    CAS  Google Scholar 

  43. Crowle MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, McGinity JW, Martin C (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33:909–926

    Google Scholar 

  44. Rayleigh L (1878) On the stability of jets. Proc Lond Math Soc 10:4–13

    Google Scholar 

  45. Heinzen C, Berger A, Marison IW (2004) Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation technology. Kluwer Academic Publishers, Dordrecht, pp 257–275

    Google Scholar 

  46. Whelan M, Marison IW (2011) Microencapsulation using vibrating technology. J Microencapsul 28(8):669–688

    Google Scholar 

  47. Gugerli R (2003) Polyelectrolyte-complex and covalent-complex microcapsules for encapsulation of mammalian cells: potential and limitations. Chemical Engineering, Lausanne, Ecole Polytechnique Federale de Lausanne

    Google Scholar 

  48. Marison IW, Peters A, Heinzen C (2004) Liquid core capsules for applications in biotechnology. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation biotechnology. Kluwer Academic Publishers, Dordrecht, pp 185–204

    Google Scholar 

  49. Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA (2020) Microfluidics for production of particles: mechanism, methodology, and applications. Small 16(9): 1904673

    Google Scholar 

  50. Wang JT, Wang J, Han JJ (2011) Fabrication of advanced particles and particle-based materials assisted by droplet based microfluidics. Small 7(13):1728–1754

    CAS  Google Scholar 

  51. Chen JM, Kuo MC, Liu CP (2011) Control of droplet generation in flow-focusing microfluidic device with a converging-diverging nozzle-shaped section. Japanese J Appl Phys 50(10R): 107301

    Google Scholar 

  52. Bah MG, Bilal HM, Wang J (2019) Fabrication and application of complex microcapsules: a review. Soft Matter 16:570–590

    Google Scholar 

  53. Zhao CX, Middelberg AP (2011) Two phase microfluidic flows. Chem Eng Sci 66:1394–1411

    CAS  Google Scholar 

  54. Collins DJ, Nield A, deMello A, Qun Liu A, Ai Y (2015) The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15:3439–3459

    CAS  Google Scholar 

  55. Kucuk I, Edirisinghe M (2014) Microfluidic preparation of polymer nanospheres. J Nanopart Res 16:2626

    Google Scholar 

  56. Deng NN, Huck WTS (2017) Microfluidic formation of monodisperse coacervate organelles in liposomes. Angew Chem Int Ed 56(33):9736–9740

    CAS  Google Scholar 

  57. Hou L, Ren Y, Liu W, Deng X, Chen X, Jiang T, Wu G, Jiang H (2020) Eccentric magnetic microcapsule for on-demand transportation, release, and evacuation in microfabrication fluidic networks. Colloids Surfaces A Physicochem Eng Aspects 599:124905

    Google Scholar 

  58. Lei KF (2018) Introduction: the origin, current status, and future of microfluidics. microfluidics: fundamental, devices and applications. In: Song Y, Cheng D, Zhao L (eds) Microfluidics: fundamental, devices and applications. Wiley‐VCH Verlag GmbH & Co. KGaA, pp 1–18

    Google Scholar 

  59. Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 4:242–246

    Google Scholar 

  60. Chen CS, Breslauer DN, Luna JI (2008) Shrinky-dink microfluidics: 3D polystyrene chips. Lab Chip 8:622–624

    CAS  Google Scholar 

  61. Wabuyele MB, Ford SM, Stryjewski W (2001) Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices. Electrophoresis 22:3939–3948

    CAS  Google Scholar 

  62. Lemetter C, Meeuse F, Zuidam N (2009) Control of the morphology and the size of complex coacervate microcapsules during scale-up. AIChE J 55(6):1487–1496

    CAS  Google Scholar 

  63. de Kruif CG, Weinbreck F, de Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9(5):340–349

    Google Scholar 

  64. Timilsena YP, Akanbi TO, Khalid N, Adhikari B, Barrow CJ (2019) Complex coacervation: principles, mechanisms and applications in microencapsulation. Int J Biol Macromol 121:1276–1286

    CAS  Google Scholar 

  65. Yan M (2016) Microencapsulation with coacervation. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 235–243

    Google Scholar 

  66. Deveci SS, Basal G (2009) Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan. Colloid Polym Sci 287(12):1455–1467

    CAS  Google Scholar 

  67. Yan C, Zhang W, Jin Y, Webber LA, Barrow C (2008) Vegetarian microcapsules. WO/2008085997

    Google Scholar 

  68. Mendanha DV, Ortiz SEM, Favaro-Trindade CS, Mauri A, Monterrey-Quintero ES, Thomazini M (2009) Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Res Int 42:1099–1104

    CAS  Google Scholar 

  69. Timilsena YP, Vongsvivut J, Tobin MJ, Adhikari R, Barrow C, Adhikari B (2019) Investigation of oil distribution in spray-dried chia seed oil microcapsules using synchrotron-FTIR microspectroscopy. Food Chem 275:457–466

    CAS  Google Scholar 

  70. Pham BL, Wang B, Zisu B, Truong T, Adhikari B (2020) Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates. Food Hydrocolloids 107:105944

    Google Scholar 

  71. Li M, Rouaud O, Poncelet D (2008) Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int J Pharm 363:26–39

    CAS  Google Scholar 

  72. Amasya G, Badilli U, Aksu B, Tarimci N (2016) Quality by design case study 1: design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion—solvent evaporation method. Eur J Pharm Sci 84:92–102

    CAS  Google Scholar 

  73. Lai MK, Tsiang RCC (2005) Microencapsulation of acetaminophen into poly(L-lactide) by three different emulsion solvent-evaporation methods. J Microencapsul 22(3):261–274

    CAS  Google Scholar 

  74. Allain LR, Sorasaenee K, Xue Z (1997) Doped thin-film sensors via a sol-gel process for high-acidity determination. Anal Chem 69(15):3076–3080

    CAS  Google Scholar 

  75. Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horizon 3:91–112

    CAS  Google Scholar 

  76. Ciriminna R, Sciortino M, Alonzo G, Schrijver AD, Pagliaro M (2010) From molecules to systems: sol–gel microencapsulation in silica-based materials. Chem Rev 111(2):765–789

    Google Scholar 

  77. Sol-Gel Scheme.svg [Online]. Available: https://commons.wikimedia.org/wiki/File:Sol-Gel_Scheme.svg. Accessed 11.08.2020

  78. Magdassi S, Avnir D, Seri-levy A, Lapidot N, Rottman C, Sorek Y, Gans O (2001) Method for the preparation of oxide microcapsules loaded with functional molecules and the products obtained thereof. US 6303149

    Google Scholar 

  79. Hitchen SM, Dean JR (1993) Properties of supercritical fluids. In: Dean JR (ed) Applications of supercritical fluids in industrial analysis. Springer, Dordrecht, pp 1–11

    Google Scholar 

  80. Martín A, Fraile M, Rodríguez-Rojo S, José Cocero M (2016) Supercritical fluid technology for encapsulation. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 447–468

    Google Scholar 

  81. Karim FT, Ghafoor K, Ferdosh S, Al-Juhaimi F, Ali E, Yunus KB, Hamed MH, Islam A, Asif M, Zaidul M, Sarker I (2017) Microencapsulation of fish oil using supercritical antisolvent process. J Food Drug Anal 25(3):654–666

    CAS  Google Scholar 

  82. Suttiruengwong S, Rolker J, Smirnova I, Arlt W, Seiler M, Luederitz L, Perez de Diego Y, Jansens PJ (2006) Hyperbranched polymers as drug carriers: microencapsulation and release kinetics. Pharm Dev Technol 11(1):55–70

    CAS  Google Scholar 

  83. Zabihi F, Yang M, Leng Y, Zhao Y (2015) PLGA–HPMC nanoparticles prepared by a modified supercritical antisolvent technique for the controlled release of insulin. J Supercrit Fluids 99:15–22

    CAS  Google Scholar 

  84. Martın A, Varona S, Navarrete A, Cocero MJ (2010) Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. Open Chem Eng J 4(1):31–41

    Google Scholar 

  85. Duan B (2015) Microencapsulation via interfacial polymerization. In: Mishra MK (eds) Handbook of encapsulation and controlled release. CRC Press, pp 297–305

    Google Scholar 

  86. Jagtap SB, Patil VD, Suresh K, Ram F, Mohan MS, Rajput SS, Patil S, Shukla PG, Shanmuganathan K (2018) Functionalized carbon nanotube reinforced polymer nanocomposite microcapsules with enhanced stiffness. Colloids Surf, A 550:82–89

    CAS  Google Scholar 

  87. Shukla PG (2018) Microcapsule modified with nanomaterial for controlled release of active agent and preparation process thereof. US 20180161746

    Google Scholar 

  88. Rajagopalan N, Bhaskar C, Bankar VS, Pokharkar VB, Shukla PG, Regupathy A, Khilar KC (1995) Starch urea formaldehyde matrix encapsulation of solid agrochemicals: III. Studies and bio efficacy trials on double encapsulation. Pesticide Sci 45:123–131

    Google Scholar 

  89. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37(16): 2201−2205

    Google Scholar 

  90. Jia Y, Li J (2019) Molecular assemblies of biomimetic microcapsules. Langmuir 35:8557–8564

    CAS  Google Scholar 

  91. Ariga K, Yamauchi Y, Rydzek G, Ji Q, Yonamine Y, Wu KCW, Hill JP (2014) Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43(1):36–68

    CAS  Google Scholar 

  92. He Q, Cui Y, Li J (2009) Molecular assembly and application of biomimetic microcapsules. Chem Soc Rev 38(8):2292–2303

    CAS  Google Scholar 

  93. Matsusaki M, Ajiro H, Kida T, Serizawa T, Akashi M (2012) Layer-by-layer assembly through weak interactions and their biomedical applications. Adv Mater 24(4):454–474

    CAS  Google Scholar 

  94. Shukla PG (2006) Microencapsulation of liquid active agents. In: Ghosh SK (eds) Functional coatings. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 153–186

    Google Scholar 

  95. Li H, Cui Y, Wang H, Zhu Y, Wang B (2017) Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids Surf, A 518:181–187

    CAS  Google Scholar 

  96. Higuchi T (1961) Rate of release of medicaments from ointments bases containing drugs in suspension. J Pharm Sci 50:874–875

    CAS  Google Scholar 

  97. Weilbull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  98. Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA (1983) Mechanism of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35

    CAS  Google Scholar 

  99. Ritger PL, Peppas NA (1987) A simple equation for describing of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36

    CAS  Google Scholar 

  100. Kadam SL, Yadav P, Bhutkar S, Patil VD, Shukla PG, Shanmuganathan K (2019) Sustained release insect repellent microcapsules using modified cellulose nanofibers (mCNF) as pickering emulsifier. Colloids Surf A Physicochem Eng Aspects 582: 123883

    Google Scholar 

  101. Dubey R, Shami TC, Bhasker Rao KU (2009) Microencapsulation technology and applications. Defence Sci J 59(1):82–95

    CAS  Google Scholar 

  102. Rodrigues do Amaral PH, Andrade PL, Costa de Conto L (2019) Microencapsulation and its uses in food science and technology: a review. In: Microencapsulation—processes, technologies and industrial applications. https://doi.org/10.5772/intechopen.81997

  103. Aditya N, Aditya S, Yang HJ, Kim HW, Park SO, Lee J, Ko S (2015) Curcumin and catechin co-loaded water-in-oil-in-water emulsion and its beverage application. J Funct Foods 15:35–43

    CAS  Google Scholar 

  104. Zhang T, Luo Y, Wang M, Chen F, Liu J, Meng K, Zhao H (2020) Double-layered microcapsules significantly improve the long-term effectiveness of essential oil. Polymers (Basel) 12(8):1651

    CAS  Google Scholar 

  105. Eratte D, McKnight S, Gengenbach TR, Dowling K, Barrow CJ, Adhikari BP (2015) Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. J Funct Foods 19:882–892

    CAS  Google Scholar 

  106. Ho BT, Joyce DC, Bhandari BR (2011) Encapsulation of ethylene gas into α-cyclodextrin and characterisation of the inclusion complexes. Food Chem 127(2):572–580

    CAS  Google Scholar 

  107. Wandrey C, Bartkowiak A, Harding SE (2010) Materials for encapsulation. In: Zuidam NJ, Nedović VA (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 31–100

    Google Scholar 

  108. Timilsena YP, Haque MA, Adhikari BR (2020) Encapsulation in the food industry: a brief historical overview to recent developments. Food Nutr Sci 11:481–508

    CAS  Google Scholar 

  109. Zhao H, Fei X, Cao L, Zhang B, Liu X (2019) The fabrication of fragrance microcapsules and their sustained and broken release behavior. Materials (Basel, Switzerland) 12(3): 393

    Google Scholar 

  110. Tekin R, Bac N, Erdogmus H (2013) Microencapsulation of fragrance and natural volatile oils for application in cosmetics, and household cleaning products. Macromol Symposia 333:35–40

    CAS  Google Scholar 

  111. Rodrigues Teixeira CS (2010) Microencapsulation of perfumes for application in textile industry. https://repositorio-aberto.up.pt/bitstream/10216/57560/1/000143206.pdf. Accessed 25 Aug 2020

  112. Rodrigues SN, Martins IM, Fernandes IP, Gomes PB, Mata VG, Barreiro MF, Rodrigues AE (2009) Scentfashion®: microencapsulated perfumes for textile application. Chem Eng J 149:463–472

    CAS  Google Scholar 

  113. Casanova F, Santos L (2015) Encapsulation of cosmetic active ingredients for topical application—a review. J Microencapsul 33(1):1–17

    Google Scholar 

  114. Sansukcharearnpon A, Wanichwecharungruang S, Leepipatpaiboon N, Kerdcharoen T, Arayachukeat S (2010) High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. Int J Pharm 391(1–2):267–273

    CAS  Google Scholar 

  115. Anchisi C, Meloni MC, Maccioni AM (2007) Chitosan beads loaded with essential oils in cosmetic formulations. Int J Cosmet Sci 29(6):485–485

    Google Scholar 

  116. Sinclair RG (1973) Slow-release pesticide system. Polymers of lactic and glycolic acids as ecologically beneficial, cost-effective encapsulating materials. Environ Sci Technol 7(10): 955–956

    Google Scholar 

  117. Scher HB, Rodson M, Lee KS (1998) Microencapsulation of pesticides by interfacial polymerization utilizing isocyanate or aminoplast chemistry. Pestic Sci 54(4):394–400

    CAS  Google Scholar 

  118. Rajagopalan N, Bhaskar C, Shukla PG, Amarnath N (1994) Novel controlled-release (CR) agrochemical formulations: development and evaluations. Res Develop Controlled Release Formul Pesticides, Vienna, Austria I:91–110

    Google Scholar 

  119. Bhaskar C, Shukla PG, Rajagopalan N (2000) An improved process for the preparation of micorcapsular formulations of agrochemicals. Indian Patent IN184975

    Google Scholar 

  120. Mihou AP, Michaelakis A, Krokos FD, Majomenos BE, Couladouros EA (2007) Prolonged slow release of (Z)-11-hexadecenyl acetate employing polyurea microcapsules. J Appl Entomol 131(2):128–133

    CAS  Google Scholar 

  121. Zengliang C, Yuling F, Zhongning Z (2007) Synthesis and assessment of attractiveness and mating disruption efficacy of sex pheromone microcapsules for the diamondback moth, Plutella xylostella (L). Chin Sci Bull 57(10):1365–1371

    Google Scholar 

  122. Gregg PC, Del Socorro AP, Landolt PJ (2018) Advances in attract-and-kill for agricultural pests: beyond pheromones. Annu Rev Entomol 63(1):453–470

    CAS  Google Scholar 

  123. Humbert P, Vemmer M, Mävers F, Schumann M, Vidal S, Patel AV (2018) Development of an attract-and-kill co-formulation containing Saccharomyces cerevisiae and neem extract attractive towards wireworms. Pest Manag Sci 74(7):1575–1585

    CAS  Google Scholar 

  124. Humbert P, Vemmer M, Giampà M, Bednarz H, Niehaus K, Patel AV (2017) Co-encapsulation of amyloglucosidase with starch and Saccharomyces cerevisiae as basis for a long-lasting CO2 release. World J Microbiol Biotechnol 33(4):71

    Google Scholar 

  125. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    CAS  Google Scholar 

  126. Kanellopoulos A, Giannaros P, Palmer D, Kerr A, Al-Tabbaa A (2017) Polymeric microcapsules with switchable mechanical properties for self-healing concrete: synthesis, characterization and proof of concept. Smart Mater Struct 26: 045025

    Google Scholar 

  127. Zhu Y, Cao K, Chen M, Wu L (2019) Synthesis of UV-responsive self-healing microcapsules and their potential application in aerospace coatings. ACS Appl Mater Interfaces 11(36):33314–33322

    CAS  Google Scholar 

  128. Feio R, Ferreira O, Bordado JC, Marques AC, Silva ER (2015) Microencapsulation of biocides: a new strategy for biofouling control. https://fenix.tecnico.ulisboa.pt/downloadFile/1126295043835061/Extended%20Abstract.pdf. Accessed 26 Aug 2020

  129. Kartal GE, Sarıışık AM (2020) Providing antifouling properties to fishing nets with encapsulated econea. J Ind Text. https://doi.org/10.1177/1528083720920568

    Article  Google Scholar 

  130. Shukla PG, Sivaram S (2006) Polyurethane microcapsules containing biocide and process for the preparation thereof. US 2006/0251688 A1

    Google Scholar 

  131. Joshi M (2013) Role of Eudragit in targeted drug delivery. Int J Current Pharmaceutical Res 5(2):58–62

    Google Scholar 

  132. Blanchette J (2016) Cell encapsulation. In: Mishra MK (ed) Handbook of encapsulation and controlled release. CRC Press, pp 917–931

    Google Scholar 

  133. Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Guisan JM (eds) Immobilization of enzymes and cells. Methods in biotechnology™, vol 22. Humana Press, pp 15–30

    Google Scholar 

  134. Genta I, Perugini P, Pavanetto F, Maculotti K, Modena T, Casado B, Lupi A, Iadarola P, Conti B (2001) Enzyme loaded biodegradable microspheres in vitro: ex vivo evaluation. J Control Release 77(3):287–295

    CAS  Google Scholar 

  135. Borodina T, Markvicheva E, Kunizhev S, Möhwald H, Sukhorukov GB, Kreft O (2007) Controlled release of DNA from self-degrading microcapsules. Macromol Rapid Commun 28:1894–1899

    CAS  Google Scholar 

  136. Khattab TA, Fouda MMG, Abdelrahman MS, Othman SI, Bin-Jumah M, Alqaraawi MA, Al Fassam H, Allam AA (2019) Co-encapsulation of enzyme and tricyanofuran hydrazone into alginate microcapsules incorporated onto cotton fabric as a biosensor for colorimetric recognition of urea. React Funct Polym 142:199–206

    CAS  Google Scholar 

  137. Tong W, Gao C (2016) Multilayer microcapsules with tailored structures and properties as delivery carriers for drugs and growth factors. In: Gao C (eds) Polymeric biomaterials for tissue regeneration. Springer, Singapore

    Google Scholar 

  138. Fontana F, Ferreira MPA, Correia A, Hirvonen J, Santos HA (2016) Microfluidics as a cutting-edge technique for drug delivery applications. J Drug Delivery Sci Technol 34:76–87

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadhiravan Shanmuganathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhutkar, S., Shanmuganathan, K. (2022). Polymer Based Microcapsules for Encapsulation. In: Parameswaranpillai, J., V. Salim, N., Pulikkalparambil, H., Mavinkere Rangappa, S., Suchart Siengchin, I.h. (eds) Micro- and Nano-containers for Smart Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8146-2_1

Download citation

Publish with us

Policies and ethics