Skip to main content

Functionalization Strategies of Metal–Organic Frameworks (MOFs): Diverse Ways to Versatile MOFs

  • Chapter
  • First Online:
Metal-Organic Frameworks (MOFs) as Catalysts

Abstract

Recently, metal–organic frameworks have been regarded as one of the major classes of porous crystalline materials. Each year witnesses new and novel MOF structures. The as-developed novel structures possess a distinct set of hallmarks, i.e., permanent porosity, diverse composition, and unique surface properties. In structural aspects, MOFs are often constructed from metal ions/clusters coordinated by organic linkers. Any modifications in the adjustment of linker geometry, length, ratio, or functional group can tune the size, shape, and internal surface properties of a MOF for a targeted application. Available literature significantly proved the improved properties like high thermal stability of the MOFs upon functionalization. In this chapter, we have focused on the recent advances in MOF synthesis through various strategies of functionalization to attain unique properties. Finally, the possible future development of functional MOFs toward different practical applications is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MOF:

Metal-Organic Framework

PCP:

Porous Coordination Polymers

SBU:

Secondary Building Unit

CUS:

Coordination Unsaturated Sites

bdc:

1,4-Benzenedicarboxylate

bpy:

4,4’-Bipyridyl

PyC:

Pyrrole-2-carboxylate

btc:

1,3,5-Benzenetricarboxylate

tpdc:

P,p’-terphenyldicarboxylate

bpdc:

4,4’-Biphenyldicarboxylate

dobdc:

4,4’-Biphenyldicarboxylate

4-bpmh:

N,N’-bis-pyridin-4-ylmethylene-hydrazine

bpydc:

2,2’-Bipyridine-5,5’-dicarboxylate

BTDD:

Bis(1,2,3-triazolato-[4,5-b],[4’,5’-i])dibenzo-[1,4]-dioxin

POM:

Polyoxometallate

NPs:

Nanoparticles

UiO:

Universitetet i Oslo (University of Oslo)

MIL:

Materials Institute Lavoisier

ALD:

Atomic Layer Deposition

AIM:

ALD in MOFs

CAL:

Coordinative Alignment

XRD:

X-ray diffraction

SALE:

Solvent-Assisted Ligand Exchange

SLI:

Sequential Linker Installation

SC-XRD:

Single-crystal X-ray diffraction

TPO:

Temperature-programmed Oxidation

IRMOF:

Isoreticular MOF

PCN:

Porous Coordination Network

PSM:

Post-synthetic Modifications

RhB:

Rhodamine B

DMAc:

N,N-dimethylacetamide

MRI:

Magnetic Resonance Imaging

DOX:

Doxorubicin

References

  1. Ahmed I, Jhung SH (2014) Composites of metal-organic frameworks: preparation and application in adsorption. Mater Today 17(3):136–146. https://doi.org/10.1016/j.mattod.2014.03.002

    Article  CAS  Google Scholar 

  2. Bahamon D et al (2021) Effect of amine functionalization of MOF adsorbents for enhanced CO2 capture and separation: a molecular simulation study. Front Chem 8(January):1–11

    Google Scholar 

  3. Bloch ED et al (2010) Metal insertion in a microporous metal-organic framework lined with 2,2′-Bipyridine. J Am Chem Soc 132(41):14382–14384

    Article  CAS  Google Scholar 

  4. Botas JA, Calleja G, Sánchez-Sánchez M, Gisela Orcajo M (2010) Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26(8):5300–5303. https://doi.org/10.1021/la100423a

  5. Bradshaw D, Garai A, Huo J (2012) Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem Soc Rev 41(6):2344–2381. http://xlink.rsc.org/?DOI=C1CS15276A

  6. Bromberg L et al (2012) Bromberg2012 (III)

    Google Scholar 

  7. Burrows AD (2013) Metal-organic frameworks as heterogeneous catalysts. Post-synthetic modification of MOFs

    Google Scholar 

  8. Cai M et al (2020) Functionalization of MOF-5 with mono-substituents: effects on drug delivery behavior. RSC Adv 10(60):36862–36872

    Article  CAS  Google Scholar 

  9. Chen J, Li Y (2016) The road to MOF-related functional materials and beyond: desire, design, decoration, and development. Chem Rec 16(3):1456–1476. https://doi.org/10.1002/tcr.201500304

  10. Chen L, Luque R, Li Y (2017) Controllable design of tunable nanostructures inside metal-organic frameworks. Chem Soc Rev 46(15):4614–4630. https://doi.org/10.1039/C6CS00537C

    Article  CAS  PubMed  Google Scholar 

  11. Chen L et al (2020) The function of metal-organic frameworks in the application of MOF-based composites. Nanoscale Advances 2(7):2628–2647

    Article  CAS  Google Scholar 

  12. Consideration General (2020) Metal organic frameworks. MDPI. http://www.mdpi.com/books/pdfview/book/2140

  13. Denysenko D et al (2012) Reversible gas-phase redox processes catalyzed by co-exchanged MFU-4l(Arge). Chem Commun 48(9):1236–1238

    Article  CAS  Google Scholar 

  14. Douvali A et al (2015) Turn-on luminescence sensing and real-time detection of traces of water in organic solvents by a flexible metal-organic framework. Angew Chem Int Ed 54(5):1651–1656

    Article  CAS  Google Scholar 

  15. Falcaro P et al (2011) A new method to position and functionalize metal-organic framework crystals. Nat Commun 2(1):237. http://www.ncbi.nlm.nih.gov/pubmed/21407203

  16. Fang QR, Makal TA, Young MD, Zhou HC (2010) Recent advances in the study of mesoporous metal-organic frameworks. Comments Inorg Chem 31(5):165–195

    Article  CAS  Google Scholar 

  17. Fang Z, Bueken B, De Vos DE, Fischer RA (2015) Defect-engineered metal-organic frameworks. Angew Chem Int Ed 54(25):7234–7254. https://doi.org/10.1002/anie.201411540

  18. Fujita M, Washizu S, Ogura K, Kwon YJ (1994) Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of Cadmium(II) and 4, 4ʹ-Bipyridine. J Am Chem Soc 116(3):1151–1152

    Article  CAS  Google Scholar 

  19. Furukawa H et al (2011) Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem 50(18):9147–9152

    Article  CAS  Google Scholar 

  20. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149)

    Google Scholar 

  21. Garibay SJ, Cohen SM (2010) Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem Commun 46(41):7700–7702

    Article  CAS  Google Scholar 

  22. Garibay SJ, Wang Z, Tanabe KK, Cohen SM (2009) Postsynthetic modification: a versatile approach toward multifunctional metal-organic frameworks. Inorg Chem 48(15):7341–7349

    Article  CAS  Google Scholar 

  23. Gharib M, Esrafili L, Morsali A, Retailleau P (2019) Solvent-assisted ligand exchange (SALE) for the enhancement of epoxide ring-opening reaction catalysis based on three amide-functionalized metal-organic frameworks. Dalton Trans 48(24):8803–8814

    Article  CAS  Google Scholar 

  24. Han SY et al (2018) A methylthio-functionalized-MOF photocatalyst with high performance for visible-light-driven H2 evolution. Angew Chem Int Ed 57(31):9864–9869

    Article  CAS  Google Scholar 

  25. Hermannsdörfer J, Kempe R (2011) Selective palladium-loaded MIL-101 catalysts. Chem Eur J 17(29):8071–8077

    Article  Google Scholar 

  26. Hu XJ et al (2020) Designing a bifunctional brønsted acid-base heterogeneous catalyst through precise installation of ligands on metal-organic frameworks. CCS Chem 2(1):616–622

    Article  CAS  Google Scholar 

  27. Jiang H-L et al (2012) Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal–organic frameworks. J Am Chem Soc 134(36):14690–14693. https://doi.org/10.1021/ja3063919

  28. Jiao L et al (2019) Metal–organic frameworks: structures and functional applications. Mater Today 27(August):43–68

    Article  CAS  Google Scholar 

  29. Kang M, Kang DW, Hong CS (2019) Post-synthetic diamine-functionalization of MOF-74 type frameworks for effective carbon dioxide separation. Dalton Trans 48(7):2263–2270

    Article  CAS  Google Scholar 

  30. Kiang YH et al (1999) Variable pore size, variable chemical functionality, and an example of reactivity within porous phenylacetylene silver salts. J Am Chem Soc 121(36):8204–8215

    Article  CAS  Google Scholar 

  31. Kim IS et al (2015) Targeted single-site MOF node modification: trivalent metal loading via atomic layer deposition. Chem Mater 27(13):4772–4778

    Article  CAS  Google Scholar 

  32. Lee H, Varma CM et al (1988) Proc Natl Acad Sci USA 37(January):714

    Google Scholar 

  33. Lee S, Kapustin EA, Yaghi OM (2016) Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353(6301):808–811

    Article  CAS  Google Scholar 

  34. Let S, Samanta P, Dutta S, Ghosh SK (2020) A dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorg Chim Acta 500(III):119205. https://doi.org/10.1016/j.ica.2019.119205

  35. Lian X et al (2017) Enzyme-MOF (metal-organic framework) composites. Chem Soc Rev 46(11):3386–3401

    Article  CAS  Google Scholar 

  36. Liang K et al (2017) An enzyme-coated metal-organic framework shell for synthetically adaptive cell survival. Angew Chem 129(29):8630–8635

    Article  Google Scholar 

  37. Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23(2):249–267

    Article  CAS  Google Scholar 

  38. Modrow A, Zargarani D, Herges R, Stock N (2012) Introducing a photo-switchable Azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification. Dalton Trans 41(28):8690–8696

    Article  CAS  Google Scholar 

  39. Nguyen JG, Cohen SM (2010) Moisture-resistant and superhydrophobic metal—organic frameworks obtained via postsynthetic modification 4560–4561

    Google Scholar 

  40. Ozer D (2020) Fabrication and functionalization strategies of MOFs and their derived materials ‘MOF architecture’. In: Applications of metal–organic frameworks and their derived materials. Wiley, pp 63–100. https://onlinelibrary.wiley.com/. https://doi.org/10.1002/9781119651079.ch3

  41. Peng YL et al (2018) A size-matched POM@MOF composite catalyst for highly efficient and recyclable ultra-deep oxidative fuel desulfurization. Inorg Chem Front 5(7):1563–1569

    Article  CAS  Google Scholar 

  42. Pentyala V et al (2016) Carbon dioxide gas detection by open metal site metal organic frameworks and surface functionalized metal organic frameworks. Sens Actuators, B Chem 225:363–368. https://doi.org/10.1016/j.snb.2015.11.071

    Article  CAS  Google Scholar 

  43. Qian B, Chang Z, Bu X-H (2020) Functionalized dynamic metal–organic frameworks as smart switches for sensing and adsorption applications. Top Curr Chem 378(1):5. https://doi.org/10.1007/s41061-019-0271-2

  44. Rogge SMJ et al (2017) Metal-organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev 46(11):3134–3184

    Article  CAS  Google Scholar 

  45. Rungtaweevoranit B et al (2016) Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett 16(12):7645–7649. https://doi.org/10.1021/acs.nanolett.6b03637

  46. Sahoo B (2017) Synthesis and characterizations of novel metal-organic frameworks (MOFs), pp 109–126. https://doi.org/10.1007/978-3-319-48350-4_5

  47. Sene S et al (2017) Maghemite-NanoMIL-100(Fe) bimodal nanovector as a platform for image-guided therapy. Chem 3(2):303–322

    Article  CAS  Google Scholar 

  48. Sriparshamoni N, Sanda S, Jena HS, Konar S (2015) Tuning CO2 uptake and reversible iodine adsorption in two isoreticular MOFs through ligand functionalization. Chem Asian J 10(3):653–660

    Article  Google Scholar 

  49. Tanabe KK, Wang Z, Cohen SM (2008) Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. J Am Chem Soc 130(26):8508–8517

    Article  CAS  Google Scholar 

  50. Tranchemontagne DJ, Tranchemontagne JL, O’keeffe M, Yaghi OM (2009) Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem Soc Rev 38(5):1257–1283

    Google Scholar 

  51. Tu B et al (2014) Ordered vacancies and their chemistry in metal-organic frameworks. J Am Chem Soc 136(41):14465–14471

    Article  CAS  Google Scholar 

  52. Valvekens P, Vermoortele F, De Vos D (2013) Metal–organic frameworks as catalysts: the role of metal active sites. Catal Sci Technol 3(6):1435. http://xlink.rsc.org/?DOI=c3cy20813c

  53. Wang L et al (2017) Nanoscale fluorescent metal-organic framework@microporous organic polymer composites for enhanced intracellular uptake and bioimaging. Chem Eur J 23(6):1379–1385

    Article  CAS  Google Scholar 

  54. Wang Z, Cohen SM (2007) Postsynthetic covalent modification of a neutral metal−organic framework. J Am Chem Soc 129(41):12368–12369. https://doi.org/10.1021/ja074366o

  55. Xu C et al (2019) Functional metal-organic frameworks for catalytic applications. Coord Chem Rev 388:268–292. https://doi.org/10.1016/j.ccr.2019.03.005

    Article  CAS  Google Scholar 

  56. Xue DX, Wang Q, Bai J (2019) Amide-functionalized metal-organic frameworks: syntheses, structures and improved gas storage and separation properties. Coord Chem Rev 378:2–16. https://doi.org/10.1016/j.ccr.2017.10.026

    Article  CAS  Google Scholar 

  57. Yaghi OM et al (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714

    Article  CAS  Google Scholar 

  58. Yaghi OM, Kalmutzki MJ, Diercks CS (2019) Functionalization of MOFs. In: Introduction to reticular chemistry, pp 145–176

    Google Scholar 

  59. Yang J, Yang YW (2020) Metal–organic frameworks for biomedical applications. Small 16(10):1–24

    CAS  Google Scholar 

  60. Yuan S, Qin J-S, Lollar CT, Zhou H-C (2018) Stable metal-organic frameworks with group 4 metals: current status and trends. ACS Cent Sci 4(4):440–450. http://www.ncbi.nlm.nih.gov/pubmed/29721526

  61. Zhao M et al (2016) Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539(7627):76–80. https://doi.org/10.1038/nature19763

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Vijayan, S., Goyal, K., Kathuria, M., Gulati, S. (2022). Functionalization Strategies of Metal–Organic Frameworks (MOFs): Diverse Ways to Versatile MOFs. In: Gulati, S. (eds) Metal-Organic Frameworks (MOFs) as Catalysts. Springer, Singapore. https://doi.org/10.1007/978-981-16-7959-9_4

Download citation

Publish with us

Policies and ethics