Skip to main content

Recent Progress in the Synthesis and Electrocatalytic Application of Metal–Organic Frameworks Encapsulated Nanoparticle Composites

  • Chapter
  • First Online:
Metal-Organic Frameworks (MOFs) as Catalysts

Abstract

Owing to uniformly distributed pores with tunable sizes and ultrahigh surface area, metal–organic frameworks (MOFs) have gained enormous interest in the rational design of electrocatalysts. However, the semiconducting or insulating nature of MOFs limits their electrocatalytic properties. Considerable efforts have been attempted to improve the catalytic properties of MOFs such as increasing the conductivity of MOFs, formation of composites, or using MOFs as the template for MOF-derived nanostructures. MOFs also provide an opportunity to encapsulate metal and semiconductors nanoparticles (NPs), which show enhanced electrocatalytic activity compared to individual components because of the synergistic effect. Uniform and large pores in MOFs promote the facile mass transfer, diffusion of the redox-active species, and further reduce the aggregation of metal nanoparticles and hence, enhance their structural and catalytic stability.

This chapter presents a review of the recent progress in MOFs, MOF encapsulated catalytically active NPs and MOF-derived nanostructures for electrochemical applications. To begin with, some key challenges related to MOFs for electrocatalysis are presented, followed by the state-of-the-art advances in the synthesis of MOF encapsulated NPs. Electrochemical performances of MOFs are discussed. Further, owing to the synergistic effect and utilizing accessible metal sites of MOFs along with encapsulated NPs for enhancement in electrocatalytic activity is discussed. MOFs acting as sacrificial templates to synthesize various carbon-based electrocatalysts are also discussed. In last, a summary and future perspective of MOFs and MOF-based electrocatalysts are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MOFs:

Metal-organic frameworks

HER:

Hydrogen evolution reaction

OER:

Oxygen evolution reaction

ORR:

Oxygen reduction reaction

CORR:

Carbon dioxide reduction reaction

NRR:

Nitrogen reduction reaction

SBU:

Secondary building unit

POMs:

Poly oxometalates

NP:

Nanoparticle

HSAB:

Hard-soft acid–base

CIF:

Cobalt imidazolate framework

CTAB:

Cetyl trimethyl ammonium bromide

ECSA:

Electrochemical active surface area

LSV:

Linear sweep voltammetry

PGM:

Pt group metal

References

  1. Smalley RE (2005) Future global energy prosperity: the terawatt challenge. Mrs Bull 30:412–417

    Article  Google Scholar 

  2. Kurtz SR et al (2020) Revisiting the Terawatt challenge. MRS Bull 45:159–164

    Article  Google Scholar 

  3. Vojvodic A, Nørskov JK (2011) Optimizing perovskites for the water-splitting reaction. Science 334:1355–1356

    Google Scholar 

  4. Yan Y, Xia BY, Zhao B, Wang X (2016) A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A 4:17587–17603

    Article  CAS  Google Scholar 

  5. Zhu C, Li H, Fu S, Du D, Lin Y (2016) Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem Soc Rev 45:517–531

    Article  CAS  PubMed  Google Scholar 

  6. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  PubMed  Google Scholar 

  7. Cook TR et al (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502

    Article  CAS  PubMed  Google Scholar 

  8. Rao RR et al (2017) Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ Sci 10:2626–2637

    Article  CAS  Google Scholar 

  9. Tian X et al (2019) Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science (80-. ) 366:850–856

    Google Scholar 

  10. Yang L, Zeng X, Wang W, Cao D (2018) Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv Funct Mater 28:1704537

    Article  Google Scholar 

  11. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  12. Serre C, Millange F, Surblé S, Férey G (2004) A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew Chemie Int Ed 43:6285–6289

    Article  Google Scholar 

  13. Shimizu GKH, Vaidhyanathan R, Taylor JM (2009) Phosphonate and sulfonate metal organic frameworks. Chem Soc Rev 38:1430–1449

    Article  CAS  PubMed  Google Scholar 

  14. Yaghi OM et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  PubMed  Google Scholar 

  15. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science (80-. ) 341

    Google Scholar 

  16. Eddaoudi M et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science (80-. ) 295:469–472

    Google Scholar 

  17. Mueller U et al (2006) Metal–organic frameworks—prospective industrial applications. J Mater Chem 16:626–636

    Article  CAS  Google Scholar 

  18. Liang R, Jing F, Shen L, Qin N, Wu L (2015) MIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr (VI) and oxidation of dyes. J Hazard Mater 287:364–372

    Article  CAS  PubMed  Google Scholar 

  19. Rodríguez HS, Hinestroza JP, Ochoa‐Puentes C, Sierra CA, Soto CY (2014) Antibacterial activity against Escherichia coli of Cu‐BTC (MOF‐199) metal‐organic framework immobilized onto cellulosic fibers. J Appl Polym Sci 131

    Google Scholar 

  20. Horcajada P et al (2006) Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed Engl 45:5974–5978

    Article  CAS  PubMed  Google Scholar 

  21. Qian Y et al (2017) A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon N Y 111:641–650

    Article  CAS  Google Scholar 

  22. Song Z et al (2017) Origin of the high oxygen reduction reaction of nitrogen and sulfur co-doped MOF-derived nanocarbon electrocatalysts. Mater Horizons 4:900–907

    Article  CAS  Google Scholar 

  23. Mukhopadhyay S, Debgupta J, Singh C, Kar A, Das SK (2018) A Keggin polyoxometalate shows water oxidation activity at neutral pH: POM@ZIF-8, an efficient and robust electrocatalyst. Angew Chemie Int Ed 57:1918–1923

    Article  CAS  Google Scholar 

  24. Abdelkader-Fernández VK, Fernandes DM, Balula SS, Cunha-Silva L, Freire C (2020) Oxygen evolution reaction electrocatalytic improvement in POM@ZIF nanocomposites: a bidirectional synergistic effect. ACS Appl Energy Mater 3:2925–2934

    Article  Google Scholar 

  25. Zheng F et al (2019) Immobilizing Pd nanoclusters into electronically conductive metal-organic frameworks as bi-functional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Electrochim Acta 306:627–634

    Article  CAS  Google Scholar 

  26. Ye B et al (2019) Pt (1 1 1) quantum dot engineered Fe-MOF nanosheet arrays with porous core-shell as an electrocatalyst for efficient overall water splitting. J Catal 380:307–317

    Article  CAS  Google Scholar 

  27. Ding Z et al (2019) RhRu alloyed nanoparticles confined within metal organic frameworks for electrochemical hydrogen evolution at all pH values. Int J Hydrogen Energy 44:24680–24689

    Article  CAS  Google Scholar 

  28. Hermes S et al (2005) Metal@ MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chemie Int Ed 44:6237–6241

    Article  CAS  Google Scholar 

  29. Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315

    Article  CAS  PubMed  Google Scholar 

  30. Laurier KGM et al (2013) Iron (III)-based metal–organic frameworks as visible light photocatalysts. J Am Chem Soc 135:14488–14491

    Article  CAS  PubMed  Google Scholar 

  31. Zhuang W et al (2012) Highly potent bactericidal activity of porous metal-organic frameworks. Adv Healthc Mater 1:225–238

    Article  CAS  PubMed  Google Scholar 

  32. George P, Dhabarde NR, Chowdhury P (2017) Rapid synthesis of titanium based metal organic framework (MIL-125) via microwave route and its performance evaluation in photocatalysis. Mater Lett 186:151–154

    Article  CAS  Google Scholar 

  33. Pu S, Xu L, Sun L, Du H (2015) Tuning the optical properties of the zirconium–UiO-66 metal–organic framework for photocatalytic degradation of methyl orange. Inorg Chem Commun 52:50–52

    Article  CAS  Google Scholar 

  34. Jing H-P, Wang C-C, Zhang Y-W, Wang P, Li R (2014) Photocatalytic degradation of methylene blue in ZIF-8. Rsc Adv 4:54454–54462

    Article  CAS  Google Scholar 

  35. Roy S et al (2019) Electrocatalytic hydrogen evolution from a cobaloxime-based metal-organic framework thin film. J Am Chem Soc 141:15942–15950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu Y-P et al (2017) Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction. Angew Chemie Int Ed 56:13001–13005

    Article  CAS  Google Scholar 

  37. Xia BY et al (2016) A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:15006

    Article  CAS  Google Scholar 

  38. Wells AF (2012) Structural inorganic chemistry. Oxford university press

    Google Scholar 

  39. Cavka JH et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  PubMed  Google Scholar 

  40. Zhang M et al (2014) Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology. Angew Chemie Int Ed 53:815–818

    Article  CAS  Google Scholar 

  41. Sun L et al (2017) Is iron unique in promoting electrical conductivity in MOFs? Chem Sci 8:4450–4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park SS et al (2015) Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J Am Chem Soc 137:1774–1777

    Article  CAS  PubMed  Google Scholar 

  43. Sun L, Campbell MG, Dincă M (2016) Electrically conductive porous metal-organic frameworks. Angew Chemie Int Ed 55:3566–3579

    Article  CAS  Google Scholar 

  44. Talin AA et al (2014) Tunable electrical conductivity in metal-organic framework thin-film devices. Science (80-. ) 343:66–69

    Google Scholar 

  45. Umeyama D, Horike S, Inukai M, Itakura T, Kitagawa S (2012) Inherent proton conduction in a 2D coordination framework. J Am Chem Soc 134:12780–12785

    Article  CAS  PubMed  Google Scholar 

  46. Luan Y, Qi Y, Gao H, Zheng N, Wang G (2014) Synthesis of an amino-functionalized metal–organic framework at a nanoscale level for gold nanoparticle deposition and catalysis. J Mater Chem A 2:20588–20596

    Article  CAS  Google Scholar 

  47. Aijaz A et al (2012) Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. J Am Chem Soc 134:13926–13929

    Article  CAS  PubMed  Google Scholar 

  48. Sun D, Li Z (2016) Double-solvent method to Pd nanoclusters encapsulated inside the cavity of NH2–UiO-66 (Zr) for efficient visible-light-promoted suzuki coupling reaction. J Phys Chem C 120:19744–19750

    Article  CAS  Google Scholar 

  49. Zhu Q-L, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213

    Article  CAS  PubMed  Google Scholar 

  50. Chen Y-Z, Xu Q, Yu S-H, Jiang H-L (2015) Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. Small 11:71–76

    Article  CAS  PubMed  Google Scholar 

  51. Han J et al (2015) Metal–organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation. J Mater Chem A 3:20607–20613

    Article  CAS  Google Scholar 

  52. An B et al (2017) Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139:3834–3840

    Article  CAS  PubMed  Google Scholar 

  53. Li G et al (2014) Hydrogen storage in Pd nanocrystals covered with a metal-organic framework. Nat Mater 13:802–806

    Article  CAS  PubMed  Google Scholar 

  54. Zhao M et al (2014) Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J Am Chem Soc 136:1738–1741

    Article  CAS  PubMed  Google Scholar 

  55. Liu X et al (2015) Solar-light-driven renewable butanol separation by core-shell Ag@ZIF-8 nanowires. Adv Mater 27:3273–3277

    Article  CAS  PubMed  Google Scholar 

  56. Hu P et al (2014) Surfactant-directed atomic to mesoscale alignment: metal nanocrystals encased individually in single-crystalline porous nanostructures. J Am Chem Soc 136:10561–10564

    Article  CAS  PubMed  Google Scholar 

  57. Zhao M et al (2016) Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539:76–80

    Article  CAS  PubMed  Google Scholar 

  58. Wang S et al (2016) Nanoreactor based on macroporous single crystals of metal-organic framework. Small 12:5702–5709

    Article  CAS  PubMed  Google Scholar 

  59. He L et al (2013) Core–shell noble-metal@ metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chemie 125:3829–3833

    Article  Google Scholar 

  60. Chen L, Chen H, Li Y (2014) One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents. Chem Commun 50:14752–14755

    Article  CAS  Google Scholar 

  61. Radwan A, Jin H, He D, Mu S (2021) Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett 13:1–32

    Article  Google Scholar 

  62. Tripathy RK, Samantara AK, Behera JN (2019) A cobalt metal–organic framework (Co-MOF): a bi-functional electro active material for the oxygen evolution and reduction reaction. Dalt Trans 48:10557–10564

    Article  Google Scholar 

  63. Zhang X, Liu Q, Shi X, Asiri AM, Sun X (2018) An Fe-MOF nanosheet array with superior activity towards the alkaline oxygen evolution reaction. Inorg Chem Front 5:1405–1408

    Article  CAS  Google Scholar 

  64. Lin C-Y, Zhang J, Xia Z (2019) Coordination-dependent catalytic activity and design principles of metal-organic frameworks as efficient electrocatalysts for clean energy conversion. J Phys Chem C 123:214–221

    Article  CAS  Google Scholar 

  65. Huang H et al (2020) Conductive metal-organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction. Adv Sci 7:2000012

    Article  CAS  Google Scholar 

  66. Zou Z et al (2019) Expediting in-situ electrochemical activation of two-dimensional metal-organic frameworks for enhanced OER intrinsic activity by iron incorporation. ACS Catal 9:7356–7364

    Article  CAS  Google Scholar 

  67. Zhao X et al (2018) Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett 3:2520–2526

    Article  CAS  Google Scholar 

  68. Li F-L, Shao Q, Huang X, Lang J-P (2018) Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew Chemie Int Ed 57:1888–1892

    Article  CAS  Google Scholar 

  69. Khrizanforova V et al (2020) 3D Ni and Co redox-active metal–organic frameworks based on ferrocenyl diphosphinate and 4,4′-bipyridine ligands as efficient electrocatalysts for the hydrogen evolution reaction. Dalt Trans 49:2794–2802

    Article  CAS  Google Scholar 

  70. Zhou Y-C et al (2019) A new 3D 8-fold interpenetrating 66-dia topological Co-MOF: Syntheses, crystal structure, magnetic properties and electrocatalytic hydrogen evolution reaction. J Solid State Chem 279:120929

    Google Scholar 

  71. Huang J et al (2018) Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction. Angew Chem Int Ed Engl 57:4632–4636

    Article  CAS  PubMed  Google Scholar 

  72. Song X, Peng C, Fei H (2018) Enhanced electrocatalytic oxygen evolution by exfoliation of a metal-organic framework containing cationic one-dimensional [Co4(OH)2]6+ chains. ACS Appl Energy Mater 1:2446–2451

    Article  CAS  Google Scholar 

  73. Jia H et al (2018) A novel two-dimensional nickel phthalocyanine-based metal–organic framework for highly efficient water oxidation catalysis. J Mater Chem A 6:1188–1195

    Article  CAS  Google Scholar 

  74. Ma X, Qi K, Wei S, Zhang L, Cui X (2019) In situ encapsulated nickel-copper nanoparticles in metal-organic frameworks for oxygen evolution reaction. J Alloys Compd 770:236–242

    Article  CAS  Google Scholar 

  75. Xiao Y-H, Tian W, Jin S, Gu Z-G, Zhang J (2020) Host-guest thin films by confining ultrafine Pt/C QDs into metal-organic frameworks for highly efficient hydrogen evolution. Small 16:2005111

    Article  CAS  Google Scholar 

  76. Dou S et al (2017) Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv Funct Mater 27:1702546

    Article  Google Scholar 

  77. Parkash A (2020) Pt nanoparticles anchored on Cu-MOF-74: an efficient and durable ultra-low Pt electrocatalyst toward oxygen reduction reaction. ECS J Solid State Sci Technol 9:65021

    Article  CAS  Google Scholar 

  78. Wang J, Zeng HC (2019) A hybrid electrocatalyst with a coordinatively unsaturated metal-organic framework shell and hollow Ni3S2/NiS core for oxygen evolution reaction applications. ACS Appl Mater Interfaces 11:23180–23191

    Article  CAS  PubMed  Google Scholar 

  79. Guo D et al (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science (80-. ) 351:361 LP–365

    Google Scholar 

  80. Yang HB et al (2016) Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv 2:e1501122

    Google Scholar 

  81. Jiao Y, Zheng Y, Davey K, Qiao S-Z (2016) Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy 1:16130

    Article  CAS  Google Scholar 

  82. Zhao X et al (2014) One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. J Mater Chem A 2:11666–11671

    Article  CAS  Google Scholar 

  83. Wu M et al (2017) A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species. ACS Catal 7:6082–6088

    Article  CAS  Google Scholar 

  84. Li J-S et al (2014) Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Sci Rep 4:5130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Proietti E et al (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416

    Article  PubMed  Google Scholar 

  86. Zhang H et al (2017) Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc 139:14143–14149

    Article  CAS  PubMed  Google Scholar 

  87. Li Z et al (2016) Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv Mater 28:2337–2344

    Article  CAS  PubMed  Google Scholar 

  88. Zhou T et al (2016) Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ Sci 9:2563–2570

    Article  CAS  Google Scholar 

  89. Wang XX et al (2018) Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett 18:4163–4171

    Article  CAS  PubMed  Google Scholar 

  90. Lei Y et al (2018) Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting. Mater Chem Front 2:102–111

    Article  CAS  Google Scholar 

  91. Li X, Niu Z, Jiang J, Ai L (2016) Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. J Mater Chem A 4:3204–3209

    Article  CAS  Google Scholar 

  92. Yang Y et al (2017) Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catal 7:469–479

    Article  CAS  Google Scholar 

  93. Yang K et al (2018) Ultrasmall Ru/Cu-doped RuO2 complex embedded in amorphous carbon skeleton as highly active bifunctional electrocatalysts for overall water splitting. Small 14:1803009

    Article  Google Scholar 

  94. Li D et al (2018) Total water splitting catalyzed by Co@Ir core-shell nanoparticles encapsulated in nitrogen-doped porous carbon derived from metal-organic frameworks. ACS Sustain Chem Eng 6:5105–5114

    Article  CAS  Google Scholar 

  95. Lin Z et al (2019) Dual graphitic-N doping in a six-membered C-ring of graphene-analogous particles enables an efficient electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed Engl 58:16973–16980

    Article  CAS  PubMed  Google Scholar 

  96. Ying J et al (2017) Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy 40:88–94

    Article  CAS  Google Scholar 

  97. Jiang P et al (2018) Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv Mater 30:1705324

    Article  Google Scholar 

  98. Su J et al (2017) Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat Commun 8:14969

    Article  PubMed  PubMed Central  Google Scholar 

  99. Qiu T et al (2019) Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy 58:1–10

    Article  CAS  Google Scholar 

  100. Chen W et al (2018) Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater 30:1800396

    Article  Google Scholar 

  101. Wang T, Zhou Q, Wang X, Zheng J, Li X (2015) MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J Mater Chem A 3:16435–16439

    Article  CAS  Google Scholar 

  102. Chen Z et al (2018) Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv Mater 30:1802011

    Article  Google Scholar 

  103. Zhao C et al (2017) Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 139:8078–8081

    Article  CAS  PubMed  Google Scholar 

  104. Nam D-H et al (2018) Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J Am Chem Soc 140:11378–11386

    Article  CAS  PubMed  Google Scholar 

  105. Wang X et al (2018) Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew Chemie Int Ed 57:1944–1948

    Article  CAS  Google Scholar 

  106. Yao K et al (2020) Metal–organic framework derived copper catalysts for CO2 to ethylene conversion. J Mater Chem A 8:11117–11123

    Article  CAS  Google Scholar 

  107. Liu Y et al (2018) Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal 8:1186–1191

    Article  CAS  Google Scholar 

  108. Mukherjee S et al (2018) Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48:217–226

    Article  CAS  Google Scholar 

  109. Song P, Kang L, Wang H, Guo R, Wang R (2019) Nitrogen (N), Phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions. ACS Appl Mater Interfaces 11:12408–12414

    Article  CAS  PubMed  Google Scholar 

  110. Luo S, Li X, Gao W, Zhang H, Luo M (2020) An MOF-derived C@NiO@Ni electrocatalyst for N2 conversion to NH3 in alkaline electrolytes. Sustain Energy Fuels 4:164–170

    Article  CAS  Google Scholar 

  111. Geng Z et al (2018) Achieving a record-high yield rate of 120.9 μgNH3 mgcat.−1h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater 30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goyal, N., Rai, R.K. (2022). Recent Progress in the Synthesis and Electrocatalytic Application of Metal–Organic Frameworks Encapsulated Nanoparticle Composites. In: Gulati, S. (eds) Metal-Organic Frameworks (MOFs) as Catalysts. Springer, Singapore. https://doi.org/10.1007/978-981-16-7959-9_27

Download citation

Publish with us

Policies and ethics