Skip to main content

Statistical Linear Calibration in Data with Measurement Errors

  • Conference paper
  • First Online:
Applied Statistical Methods (ISGES 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 380))

  • 521 Accesses

Abstract

The direct and inverse regression-based estimators are used for linear statistical calibration. The direct regression finds the relationship between the dependent and independent variables, and inverse regression uses it for calibration. When both the dependent and independent variables in linear calibration are subjected to measurement errors, the resultant estimators become biased and inconsistent. Assuming the availability of replicated observations on the independent variable, a calibration estimator is presented which has zero large sample asymptotic bias. The large sample efficiency properties of the calibration estimators are derived and analyzed assuming the random errors are not necessarily normally distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aitchison, J. A. (1977). Calibration problem in statistical diagnosis: The system transfer problem. Biometrika, 64(3), 461–472.

    Article  MathSciNet  Google Scholar 

  • Bartlett, J. W., & Keogh, R. H. (2018). Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration. Statistical Methods in Medical Research, 27(6), 1695–1708.

    Article  MathSciNet  Google Scholar 

  • Berkson, J. (1969). Estimation of a linear function for a calibration line: Consideration of a recent proposal. Technometrics, 11, 649–660.

    Article  Google Scholar 

  • Blas, B., Bolfarine, H., & Lachos, V. H. (2013). Statistical analysis of controlled calibration model with replicates. Journal of Statistical Computation and Simulation, 83(5), 939–959.

    Article  MathSciNet  Google Scholar 

  • Brown, P. J. (1982). Multivariate calibration. With discussion. Journal of Royal Statistical Society, Series B, 44(3), 287–321.

    Google Scholar 

  • Brown, P. J. (1993). Measurement error, regression and calibration. Oxford Statistical Science Series. The Clarendon Press, Oxford University Press.

    Google Scholar 

  • Brown, P. J., & Sundberg, R. (1987). Confidence and conflict in multivariate calibration. Journal of Royal Statistical Society, Series B, 49(1), 46–57.

    MathSciNet  MATH  Google Scholar 

  • Brown, P. J., & Sundberg, R. (1989). Prediction diagnostics and updating in multivariate calibration. Biometrika, 76(2), 349–361.

    MathSciNet  MATH  Google Scholar 

  • Cheng, C., & Van Ness, J. W. (1999). Statistical regression with measurement error. Arnold.

    Google Scholar 

  • Dunsmore, I. R. (1968). A Bayesian approach to calibration. Journal of Royal Statistical Society, Series B, 30, 396–405.

    MathSciNet  Google Scholar 

  • Friedland, B. (1977). On the calibration problem. IEEE Transactions on Automatic Control, AC-22(6), 899–905.

    Google Scholar 

  • Fuller, W. A. (1987). Measurement error models. Wily.

    Google Scholar 

  • Gleser, L. J. (1992). The importance of assessing measurement reliability in multivariate regression. Journal of American Statistical Association, 87(419), 696–707.

    Article  MathSciNet  Google Scholar 

  • Gleser, L. J. (1993). Estimators of slopes in linear errors-in-variables regression models when the predictors have known reliability matrix. Statistic& Probability Letters, 17, 113–121.

    Article  MathSciNet  Google Scholar 

  • Gray, C. M., Carroll, R. J., Lentjes, M. A. H., & Keogh, R. H. (2019). Correcting for measurement error in fractional polynomial models using Bayesian modelling and regression calibration, with an application to alcohol and mortality. Biometrical Journal, 61(3), 558–573.

    Article  MathSciNet  Google Scholar 

  • Gregory, A. W., & Smith, G. W. (1993). Statistical aspects of calibration in macroeconomics. In Handbook of statistics. Econometrics (Vol. 11, pp. 703–719)

    Google Scholar 

  • Halperin, M. (1970). On inverse estimation in linear regression. Technometrics, 12, 727–736.

    Article  Google Scholar 

  • Han, Y., Liu, W., Bretz, F., Wan, F., & Yang, P. (2016). Statistical calibration and exact one-sided simultaneous tolerance intervals for polynomial regression. Journal of Statistical Planning and Inference, 168, 90–96.

    Article  MathSciNet  Google Scholar 

  • Huang, S. Y. H. (2005). Regression calibration using response variables in linear models. Statistica Sinica, 15(3), 685–696.

    MathSciNet  MATH  Google Scholar 

  • Hunter, W. G., & Lamboy, W. F. (1981). A Bayesian analysis of the linear calibration problem. Technometrics, 23(4), 323–350.

    Article  MathSciNet  Google Scholar 

  • Joseph, V. R., & Yan, H. (2015). Engineering-driven statistical adjustment and calibration. Technometrics, 57(2), 257–267.

    Google Scholar 

  • Krutchkoff, R. G. (1967). Classical and inverse regression methods of calibration. Technometrics, 9, 425–439.

    Article  MathSciNet  Google Scholar 

  • Krutchkoff, R. G. (1969). Classical and inverse regression methods of calibration in extrapolation. Technometrics, 11, 605–608.

    Article  MathSciNet  Google Scholar 

  • Krutchkoff, R. G. (1971). The calibration problem and closeness. Journal of Statistical Computation and Simulation, 1(1), 87–95.

    Article  MathSciNet  Google Scholar 

  • Lee, S., & Yum, B. (1989). Large-sample comparisons of calibration procedures when both measurements are subject to errors: The unreplicated case. Communications in Statistics, Theory and Methods, 18, 3821–3840.

    Article  MathSciNet  Google Scholar 

  • Lwin, T., & Maritz, J. S. (1980). A note on the problem of statistical calibration. Journal of Royal Statistical Society, Series C, 29(2), 135–141.

    MathSciNet  MATH  Google Scholar 

  • Lwin, T., & Spiegelman, C. H. (1986). Calibration with working standards. Journal of Royal Statistical Society, Series C, 35(3), 256–261.

    MathSciNet  Google Scholar 

  • Minder, C. E., & Whitney, J. B. (1975). A likelihood analysis of the linear calibration problem. Technometrics, 17(4), 463–471.

    Article  MathSciNet  Google Scholar 

  • Misquitta, P., & Ruymgaart, F. H. (2005). Some results on nonparametric calibration. Communications in Statistics, Theory and Methods, 34(7), 1605–1616.

    Article  MathSciNet  Google Scholar 

  • Osborne, C. (1991). Statistical calibration: A review. International Statistical Review, 59, 309–336.

    Article  Google Scholar 

  • Pepper, M. P. G. (1973). A calibration of instruments with non-random errors. Technometrics, 15, 587–599.

    Article  MathSciNet  Google Scholar 

  • Rao, C. R., Toutenburg, H., Shalabh, & Heumann, C. (2008). Linear models and generalizations: Least squares and alternatives. Springer.

    Google Scholar 

  • Salter, J. M., & Williamson, D. (2016). A comparison of statistical emulation methodologies for multi-wave calibration of environmental models. Environmetrics, 27(8), 507–523.

    Article  MathSciNet  Google Scholar 

  • Sansó, B., & Forest, C. (2009). Statistical calibration of climate system properties. Journal of Royal Statistical Society, Series C, Applied Statistics, 58(4), 485–503.

    Article  MathSciNet  Google Scholar 

  • Scheffé, H. (1973). A statistical theory of calibration. Annals of Statistics, 1, 1–37.

    Article  MathSciNet  Google Scholar 

  • Shalabh, & Toutenburg, H. (2006). Consequence of departure from normality on the properties of calibration estimators. Journal of Statistical Planning and Inference, 136(12), 4385–4396.

    Google Scholar 

  • Skrondal, A., & Kuha, J. (2012). Improved regression calibration. Psychometrika, 77(4), 649–669.

    Google Scholar 

  • Spiegelman, D. (2013). Regression calibration in air pollution epidemiology with exposure estimated by spatio-temporal modeling. Environmetrics, 24(8), 521–524.

    Google Scholar 

  • Spiegelman, D., Logan, R., & Grove, D. (2011). Regression calibration with heteroscedastic error variance. International Journal of Biostatistics, 7(1), 1–34. Article 4

    Google Scholar 

  • Srivastava, A. K., & Shalabh. (1997). Asymptotic efficiency properties of least squares estimation in ultrastructural model. TEST, 6(2), 419–431.

    Google Scholar 

  • Strand, M., Sillau, S., Grunwald, G. K., & Rabinovitch, N. (2015). Regression calibration with instrumental variables for longitudinal models with interaction terms, and application to air pollution studies. Environmetrics, 26(6), 393–405.

    Google Scholar 

  • Sun, Z., Kuczek, T., & Zhu, Y. (2014). Statistical calibration of qRT-PCR, microarray and RNA-Seq gene expression data with measurement error models. Annals of Applied Statistics, 8(2), 1022–1044.

    Google Scholar 

  • Tallis, G. M. (1969). Note on a calibration problem. Biometrika, 56, 505–508.

    Article  MathSciNet  Google Scholar 

  • Wang, C. Y., Hsu, L., Feng, Z. D., & Prentice, R. L. (1997). Regression calibration in failure time regression. Biometrics, 53(1), 131–145.

    Article  MathSciNet  Google Scholar 

  • Williams, E. J. (1969). A note on regression methods in calibration. Technometrics, 11, 189–192.

    Article  Google Scholar 

  • Williford, W. O., Carter, M. C., & Field, J. E. (1979). A further look at the Bayesian approach to calibration. Journal of Statistical Computation and Simulation, 9(1), 47–67.

    Google Scholar 

  • Yu, M., & Nan, B. (2010). Regression calibration in semiparametric accelerated failure time models. Biometrics, 66(2), 405–414.

    Article  MathSciNet  Google Scholar 

  • Yum, B., & Lee, S. (1991). Calibration procedures when both measurements are subject to error: A comparative simulation study of the unreplicated case. Computers and Industrial Engineering, 20, 411–420.

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support from the MATRICS project from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalabh .

Editor information

Editors and Affiliations

Appendix

Appendix

Let us first introduce the following notation

$$\begin{aligned} A= & {} I_{np} - \frac{1}{np} e_{np} e_{np}'\nonumber \\ B= & {} \frac{1}{p} (I_n \otimes \ e_p') - \frac{1}{np} e_n e_{np}'\nonumber \\ C= & {} I_n - \frac{1}{n} e_n e_n'\\ D= & {} \frac{1}{p} (I_n \otimes \ e_p e_p') - \frac{1}{np} e_{np} e_{np}'\nonumber \end{aligned}$$

where \(\otimes \) denotes the Kronecker product operator of matrices and e denotes a column vector with all elements unity and its suffix indicating the number of elements in it.

The following properties of these matrices may be noted:

$$\begin{aligned} AD=D,\quad \ BD = D, \quad \ pB'B=D, \quad \ pBB' = C,\nonumber \\ tr A = (np-1), \quad \ tr C = tr D = (n-1),\\ A e_{np} = 0, \quad \ B e_{np} = 0, \quad \ e_n'B = 0, \quad \ C e_n = 0.\nonumber \end{aligned}$$
(5.1)

Further, if Z denotes a \(m\times 1\) random vector such that its elements are independently and identically distributed with mean 0, variance \(\sigma ^2_z\), third moment \(\sigma ^3_z \gamma _{1z}\) and fourth moment \(\sigma ^4_z (\gamma _{2z} + 3)\), we have

$$\begin{aligned} E(Z'GZ)= & {} \sigma ^2_z tr G\nonumber \\ E(Z'GZ.Z)= & {} \sigma ^3_z \gamma _{1z} (I *G)e_m\\ E(Z'GZ.Z'MZ)= & {} \sigma ^4_z [\gamma _{2z} tr H (I*G) + (tr G)(tr H) + 2 tr GH]\nonumber \end{aligned}$$
(5.2)

where G and H are \(m\times m\) symmetric matrices with nonstochastic elements and \(*\) denotes the Hadamard product operator of matrices.

If we define

$$\begin{aligned} f_{xx}= & {} \frac{2}{n^{1/2}} X' B v + \frac{n^{1/2}}{p} \left( \frac{v'A v}{n} -p\sigma _v^2 \right) \nonumber \\ f_{xy}= & {} \frac{1}{n^{1/2}} \left[ \frac{1}{\beta } (X'Cu + u'B v) + X' B v \right] \nonumber \\ f_{yy}= & {} \frac{2}{\beta n^{1/2}} X' CY + \frac{n^{1/2}}{\beta ^2} \left( \frac{u'Cu}{n} - \sigma _u^2 \right) \\ f= & {} n^{1/2} \left[ \frac{v' (A-D)v}{n(p-1)} -\sigma _v^2 \right] \nonumber \\ f_x= & {} \frac{1}{p n^{1/2}} \sum \limits _i\sum \limits _j v_{ij}\nonumber \\ f_y= & {} \frac{1}{\beta n^{1/2}} \sum \limits _i u_i,\nonumber \end{aligned}$$

it is observed that all these quantities are of order \(O_p(1)\) where \(u=(u_1,u_2,\ldots ,u_n)\) and \(v=(v_{11},v_{12},\ldots ,v_{np})\) are column vectors of order \(n\times 1\) and \(np \times 1\) respectively.

Now, from (2.6), we can express

$$\begin{aligned} (\hat{X}_c - X)= & {} \sigma _v d + \frac{f_x}{n^{1/2}} + \frac{s^2 + \sigma _v^2 + \frac{f_{xx}}{n^{1/2}}}{s^2 + \frac{f_{xy}}{n^{1/2}}} \left( \frac{U}{\beta } - \sigma _v d - \frac{f_y}{n^{1/2}} \right) \nonumber \\= & {} \sigma _v d + \frac{f_x}{n^{1/2}} + \left( \frac{U}{\beta } - \sigma _v d - \frac{f_y}{n^{1/2}} \right) \left( \frac{1}{\lambda _x} + \frac{f_{xx}}{s^2 n^{1/2}}\right) \left( 1 + \frac{f_{xy}}{s^2 n^{1/2}} \right) ^{-1}\nonumber \end{aligned}$$

where \(s^2\) and \(\lambda _x\) are defined in (3.1).

Expanding and retaining terms to order \(O_p(n^{-1/2})\), we get

$$\begin{aligned} (\hat{X}_c - X) = \frac{1}{\lambda _x} \left[ \frac{U}{\beta } - (1-\lambda _x) \sigma _v d \right] + \frac{1}{n^{1/2}} \hat{\xi }_c + O_p\left( \frac{1}{n}\right) \end{aligned}$$

where

$$\begin{aligned} \hat{\xi }_c = f_x - \frac{1}{\lambda _x} f_y + \frac{1}{s^2} \left( \frac{U}{\beta } - \sigma _v d \right) \left( f_{xx} - \frac{1}{\lambda _x} f_{xy} \right) . \end{aligned}$$

Similarly, from (2.7), we obtain

$$\begin{aligned} (\hat{X}_c^* - X)= & {} \sigma _v d + \frac{f_x}{n^{1/2}} + \left( \frac{U}{\beta } - \sigma _v d - \frac{f_y}{n^{1/2}} \right) \left[ 1 + \frac{f_{xx} - f}{s^2 n^{1/2}} \left( 1+ \frac{f_{xy}}{s^2 n^{1/2}}\right) ^{-1} \right] \\= & {} \frac{U}{\beta } + \frac{1}{n^{1/2}} \hat{\xi }_c^* + O_p\left( \frac{1}{n}\right) \nonumber \end{aligned}$$

where

$$\begin{aligned} \hat{\xi }_c^* = f_x - f_y + \frac{1}{s^2} \left( \frac{U}{\beta } - \sigma _v d \right) \left( f_{xx} - f_{xy} -f \right) . \end{aligned}$$

Likewise, it is easy to see from (2.8) that

$$\begin{aligned} (\hat{X}_I - X)= & {} \sigma _v d + \frac{f_x}{n^{1/2}} + \left( \frac{U}{\beta } - \sigma _v d - \frac{f_y}{n^{1/2}} \right) \\&\quad \left( \frac{\beta ^2 f_{xy}}{(\beta ^2s^2 + \sigma _u^2) n^{1/2}} + \frac{\beta ^2s^2}{\beta ^2s^2 + \sigma _u^2} \right) \left( 1 + \frac{\beta ^2 f_{yy}}{(\beta ^2s^2 + \sigma _u^2) n^{1/2}} \right) ^{-1}\nonumber \\= & {} \sigma _v d+ \frac{f_x}{n^{1/2}} + \left( \frac{U}{\beta } - \sigma _v d - \frac{f_y}{n^{1/2}}\right) \left( \lambda _y + \frac{\lambda _y f_{xy}}{s^2 n^{1/2}} \right) \left( 1 - \frac{\lambda _y f_{yy}}{s^2 n^{1/2}} + \ldots \right) \nonumber \\= & {} \frac{\lambda _y U}{\beta } + (1-\lambda _y)\sigma _v d + \frac{1}{n^{1/2}} \hat{\xi }_I + O_p(n^{-1})\nonumber \end{aligned}$$

where

$$\begin{aligned} \hat{\xi }_I = f_x - \lambda _y f_y + \frac{\lambda _y}{s^2} \left( \frac{U}{\beta } - \sigma _v d \right) \left( f_{xy} - \lambda _y f_{yy} \right) . \end{aligned}$$

Observing that

$$\begin{aligned} E(f_{xx}) = -\frac{\sigma _v^2}{n^{1/2}p}, \quad E(f_{yy}) = - \frac{\sigma _u^2}{n^{1/2} \beta ^2},\nonumber \\ E(f_{xy}) = E(f) = E(f_x) = E(f_y) = 0, \nonumber \end{aligned}$$

the LSABs of \(\hat{X}_c\), \(\hat{X}_I\) and \(\hat{X}_c^*\) to \(O(n^{-1/2})\) are given by

$$\begin{aligned} E(\hat{X}_c - X)= & {} \frac{1}{\lambda _x} \left[ \frac{1}{\beta } E(U) - (1- \lambda _x) \sigma _v d \right] + \frac{1}{n^{1/2}} E(\hat{\xi }_c)\\= & {} - \left( \frac{1-\lambda _x}{\lambda _x} \right) \sigma _v d \nonumber \\ E(\hat{X}_c^* - X)= & {} \frac{1}{\beta } E(U) + \frac{1}{n^{1/2}} E(\hat{\xi }_c^*)\\= & {} 0\nonumber \\ E(\hat{X}_I - X)= & {} \frac{\lambda _y}{\beta } E(U) - (1- \lambda _y) \sigma _v d + \frac{1}{n^{1/2}} E(\hat{\xi }_I)\\= & {} (1-\lambda _y) \sigma _v d \nonumber \end{aligned}$$

which are the results stated in Theorem 1.

By virtue of the distributional properties of u and v, the following results are obtained:

$$\begin{aligned} E(f_{xx}^2)= & {} \frac{s^4 (1-\lambda _x)}{p \lambda _x} \left[ 4 + \left( \frac{1 - \lambda _x}{\lambda _x}\right) (2-\gamma _{2v}) \right] + O \left( \frac{1}{n} \right) \\ E(f_{xy}^2)= & {} \frac{s^4 (1-\lambda _x)}{p \lambda _x \lambda _y} \left[ 1 + p \lambda _x \left( \frac{1 - \lambda _y}{1-\lambda _x}\right) \right] + O \left( \frac{1}{n} \right) \\ E(f_{yy}^2)= & {} \frac{s^4 (1-\lambda _y)}{\lambda _y} \left[ 4 + \left( \frac{1 - \lambda _y}{\lambda _y}\right) (2+\gamma _{2v}) \right] + O \left( \frac{1}{n} \right) \\ E(f^2)= & {} \frac{s^4 (1-\lambda _x)^2}{p \lambda _x^2} \left[ 2 \left( \frac{p}{p-1}\right) + \gamma _{2v} \right] + O \left( \frac{1}{n} \right) \\ E(f_{xx} f_{xy})= & {} \frac{2s^4 (1-\lambda _x)}{p\lambda _x} + O \left( \frac{1}{n} \right) \\ E(f_{xx} f)= & {} \frac{s^4 (1-\lambda _x)^2}{p \lambda _y^2} (2+\gamma _{2v}) + O \left( \frac{1}{n} \right) \\ E(f_{xy} f_{yy})= & {} \frac{2s^4 (1-\lambda _y)}{\lambda _y}\\ E(f_{x} f_{xx})= & {} \frac{s^2 \sigma _v \gamma _{1v} (1-\lambda _x)}{p \lambda _x} + O \left( \frac{1}{n} \right) \\ E(f_x f)= & {} \frac{s^2 \sigma _v \gamma _{1v} (1-\lambda _x)}{p \lambda _x}\\ E(f_y f_{yy})= & {} \frac{s^2 \sigma _u \gamma _{1u} (1-\lambda _y)}{ \beta \lambda _y} + O \left( \frac{1}{n} \right) \\ E(f_x^2)= & {} \frac{\sigma _v^2}{p}\\ E(f_y^2)= & {} \frac{\sigma _v^2 \lambda _x (1-\lambda _y)}{\lambda _y (1- \lambda _x)} \end{aligned}$$

and

$$ E(f_{xy} f) =E(f_x f_{xy}) = E(f_x f_{yy}) = E(f_y f_{xx}) = E(f_y f_{xy}) = E(f_y f) = E(f_x f_y) =0 $$

where repeated use has been made of (5.1) and (5.2)

Utilizing these results and we obtain the LSAVs to order \(O(n^{-1})\) as follows:

$$\begin{aligned} E[\hat{X}_c - E(\hat{X}_c)]^2= & {} \frac{1}{n} E(\hat{\xi }_c^2)\\ E[\hat{X}_c^* - E(\hat{X}_c^*)]^2= & {} \frac{1}{n} E(\hat{\xi }_c^{*2})\\ E[\hat{X}_I - E(\hat{X}_I)]^2= & {} \frac{1}{n} E(\hat{\xi }_I^2) \end{aligned}$$

which gives the results mentioned in Theorem 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shalabh (2022). Statistical Linear Calibration in Data with Measurement Errors. In: Hanagal, D.D., Latpate, R.V., Chandra, G. (eds) Applied Statistical Methods. ISGES 2020. Springer Proceedings in Mathematics & Statistics, vol 380. Springer, Singapore. https://doi.org/10.1007/978-981-16-7932-2_18

Download citation

Publish with us

Policies and ethics