Skip to main content

Vortex Beam Wave Front Correction Without Using a Wave Front Detector

  • Chapter
  • First Online:
Adaptive Optics Theory and Its Application in Optical Wireless Communication

Part of the book series: Optical Wireless Communication Theory and Technology ((OWCTAT))

  • 414 Accesses

Abstract

When a vortex beam propagates in turbulent conditions, it experiences numerous phenomena that impact the performance of the entire communication system, including light intensity flicker, mode crosstalk, beam drift, and phase distortion. Addressing the impact of turbulence has become a primary research goal in vortex optical communication systems, and the use of adaptive optics (AO) to correct wave front distortion is considered to be one of the most effective compensation methods. This chapter introduces the theory and principles of vortex beam detection and correction without using a wave front sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao AM, Padgett MJ (2011) Orbital angular momentum: origins, behavior and applications. Adv Optics Photonics 3(2):161–204

    Article  Google Scholar 

  2. Cheng W, Haus JW, Zhan Q (2009) Propagation of vector vortex beams through a turbulent atmosphere. Opt Express 17(20):17829–17836

    Article  Google Scholar 

  3. Zhu YY, Chen ZT, Liu CS et al (2013) Theoretical research of interference light field of off-axis vortex beam. J Optoelectron Laser (5):1012–1017

    Google Scholar 

  4. Molina-Terriza G, Torres JP, Torner L (2002) Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys Rev Lett 88(1):013601

    Google Scholar 

  5. Liu YD, Gao CQ, Li F et al (2007) Study on orbital angular momentum and its spectrum of partially coherent light beam. J Appl Optics 28(4):462–467

    Google Scholar 

  6. Guo XL, Ke XZ (2015) Realization of optical phase information encode by using orbital angular momentum of light beam. Chin J Quantum Electron 32(1):69–76

    Google Scholar 

  7. Allen L, Beijers Bergen MW, Spreeuw RJC et al (1992) Orbital angular momentum of light and transformation of Laguerre Gaussian laser modes. Phys Rev A 45(11):8185–8189

    Google Scholar 

  8. Wang J, Yang JY, Fazal IM et al (2012) Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6(7):488–496

    Article  Google Scholar 

  9. Willner AE, Huang H, Yan Y et al (2015) Optical communications using orbital angular momentum beams. Adv Optics Photon 7(1):66–106

    Article  Google Scholar 

  10. Ren Y, Huang H, Xie G et al (2013) Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Opt Lett 38(20):4062–4065

    Article  Google Scholar 

  11. Dai H, Wang W, Xu Q et al (2019) Estimation of probability distribution and its application in Bayesian classification and maximum likelihood regression. Interdisc Sci Comput Life Sci 11(3):559–574

    Article  Google Scholar 

  12. Ke XZ, Zhang YF, Zhang Y et al (2019) GPU acceleration in wave-front sensorless adaptive wave-front correction system. Laser Optoelectron Prog 056(007):88–96

    Google Scholar 

  13. Li Q, Shen MZ (2007) Measurement of telescope aberrations using phase-diversity method. Acta Optica Sin 027(009):1553–1557

    Google Scholar 

  14. Wu JL, Ke XZ (2018) Adaptive optics correction of wavefront sensorless. Laser Optoelectron Prog 55(03):133–139

    Google Scholar 

  15. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21(15):2758–2769

    Article  Google Scholar 

  16. Cui QR (2015) Research on beam wander of optical vortex through atmospheric turbulence and compensation method. Beijing University of Posts and Telecommunications, Beijing, pp 45–56

    Google Scholar 

  17. Zhou L, Wang L, Zhang SB et al (2015) Compensation of orbital-angular-momentum multiplexed communication system with wavefront correction. J Commun 36(10):76–84

    Google Scholar 

  18. Ren Y, Huang H, Yang JY et al (2012) Correction of phase distortion of an OAM mode using GS algorithm based phase retrieval. In: Lasers and electro-optics, CLEO: Science and Innovations, San Jose CA United, IEEE, pp 1–2

    Google Scholar 

  19. Xie G, Ren Y, Huang H et al (2015) Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm. Opt Lett 40(7):1197–1200

    Article  Google Scholar 

  20. Study on non-wavefront senor adaptive optics technology based on stochastic parallel gradient desent algorithm. Graduate School of Chinese Academy of Sciences (Changchun Institute of optics, precision machinery and Physics) (2015), pp 17–18

    Google Scholar 

  21. Experimental reseach on correcting wavefront distortion of vortex beam by phase diversity method. Xi’an University of Technology, Xi’An (2020), p 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizheng Ke .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ke, X., Wu, P. (2022). Vortex Beam Wave Front Correction Without Using a Wave Front Detector. In: Adaptive Optics Theory and Its Application in Optical Wireless Communication. Optical Wireless Communication Theory and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-7901-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7901-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7900-1

  • Online ISBN: 978-981-16-7901-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics