Skip to main content

Part of the book series: Optical Wireless Communication Theory and Technology ((OWCTAT))

  • 458 Accesses

Abstract

The wavefront of changes after it passes through the medium, which is called distortion. The wavefront distortion can be suppressed by measuring the wavefront change and changing the optical path with a deformable mirror. This chapter introduces the basic principle of the adaptive optics system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ke XZ (2016) Wireless optical communication, 1st edn. Science Press, Beijing

    Google Scholar 

  2. Chen M (2016) Research on phase matching of spatial coherent optical communication. Graduate School of Chinese Academy of Sciences, Chengdu, pp 29–30

    Google Scholar 

  3. Wu YY (2013) Application of adaptive optics technology in atmospheric optical communication. University of Chinese Academy of Sciences, Chengdu

    Google Scholar 

  4. Tyson RK, Wizinowich PL (1991) Principles of adaptive optics. Academic Press, Cambridge, pp 23–25

    Google Scholar 

  5. Jiang ZF, Xi FJ, Xu XJ (2010) Principle and application of grating wavefront curvature sensor. China Laser 37(1):205–210

    Article  Google Scholar 

  6. Xu XJ, Lu QS (2000) Comparison of wavefront reconstruction between shearing interferometer and Hartmann wavefront sensor. High Power Laser Particle Beam 12(3):269–272

    Google Scholar 

  7. Bai FZ, Rao CH (2010) Influence of pinhole diameter on correction accuracy of closed-loop adaptive optics system in self reference interferometric wavefront sensor. Acta Phys Sin 59(11):8280–8286

    Article  Google Scholar 

  8. Olivier SS (2001) Advanced adaptive optics technology development. In: International symposium on optical science and technology, vol 4494. International Society for Optics and Photonics, pp 1–10

    Google Scholar 

  9. Yang HF, Rao CH, Zhang YD et al (2009) Analysis of conjugate position requirements of deformable mirror and wavefront sensor in adaptive optics system. Optoelectron Eng 36(4):27–34

    Google Scholar 

  10. Zhang HX, Zhang J, Wu LY (2008) Study on wavefront correction using liquid crystal spatial light modulator. Infrared Laser Eng 37(6):1062–1065

    Google Scholar 

  11. Zhang TS, Lei GY, Du XW (2000) Nonlinear optical phase conjugation compensation for laser propagation beam distortion in atmosphere. Annual report of China Academy of Engineering Physics, pp 269–270

    Google Scholar 

  12. Guo YM, Rao CH, Bao H (2014) A direct calculation method for response matrix of adaptive optics system. Acta Phys Sin 63(14):455–461

    Google Scholar 

  13. Xing FF, Zhang B (2011) High frequency phase recovery of laser beam distortion wavefront. China Laser 38(4):44–49

    Google Scholar 

  14. Feng GY, Zhou SH (2009) Discussion on comprehensive evaluation of laser beam quality. China Laser 36(7):1643–1653

    Article  Google Scholar 

  15. Mahajan VN (1993) Strehl ratio for primary aberrations: some analytical results for circular and annular pupils. J Opt Soc Am 71(9):1258–1266

    Article  Google Scholar 

  16. Breckinridge JB (1990) Atmospheric wavefront simulation and Zernike polynomials. In: Amplitude & intensity spatial interferometry. International Society for Optics and Photonics

    Google Scholar 

  17. Noll RJ (1976) Zernike polynomials and atmospheric turbulence. J Opt Soc Am 66:207–211

    Article  Google Scholar 

  18. Boyer C, Michau V (1990) Adaptive optics: interaction matrix measurements and real time control algorithms for the COME-ON project. Proc SPIE 1237:63–81

    Article  Google Scholar 

  19. Overschee PV, Moor BD (1996) Subspace identification for linear systems. Springer, US

    Book  Google Scholar 

  20. Katayama T (2005) Subspace methods for system identification. Springer, London, pp 239–357

    Google Scholar 

  21. Ba TY, Guan XQ, Zhang JW (2014) Vehicle predictive control based on the recursive subspace identification method. Proc Inst Mech Eng Part D J Automobile Eng

    Google Scholar 

  22. Chiuso A (2006) On the relation between CCA and predictor-based subspace identification. In: Proceedings of the 44th IEEE conference on decision and control. IEEE

    Google Scholar 

  23. Li ZM, Guo SW (2017) Linear active disturbance rejection controller based on N4SID subspace identification. Inf Control (2)

    Google Scholar 

  24. Yang H (2007) System identification and predictive control design based on subspace method. Shanghai Jiaotong University, pp 14–20

    Google Scholar 

  25. Lin HQ (2019) Research on adaptive optics system control technology based on model identification. University of Chinese Academy of Sciences (Institute of Optoelectronic Technology, Chinese Academy of Sciences)

    Google Scholar 

  26. Wang L, Chen T, Liu XY et al (2015) Non common path aberration compensation method of adaptive optics system for wavefront processor. Acta Photonica Sin 44(5):116–120

    Article  Google Scholar 

  27. Wang Z (2014) Research on real-time performance of wavefront processing algorithm based on multi-core DSP. University of Chinese Academy of Sciences, pp 58–60

    Google Scholar 

  28. Zhang CW (2018) Research on adaptive optics real time wavefront control system based on GPU. University of Science and Technology of China, Hefei, pp 17–39

    Google Scholar 

  29. Yan HX, Zhang DL, Li SS (1997) Numerical simulation of adaptive optics system: direct slope control method. Acta Opt Sin 17(06):119–126

    Google Scholar 

  30. Jiang WH, Li HG (1990) Hartmann-Shack wavefront sensing and wavefront control algorithm. In: Adaptive optics and optical structures. SPIE, Netherlands, pp 82–93

    Google Scholar 

  31. Li XY, Wang CH, Xian H et al (2002) Real time mode restoration algorithm for adaptive optics system. Intense Laser Particle Beam 14(01):53–56

    Google Scholar 

  32. Liu ZW, Li ZD, Zhou ZQ et al (2016) Adaptive optics correction technology based on fuzzy control. Acta Phys Sin 65(1):131–136

    Google Scholar 

  33. Kasper M, Fedrigo E, Looze DP et al (2004) Fast calibration of high-order adaptive optics systems. J Opt Soc Am A Opt Image Sci Vis 21(6):1004–1008

    Article  Google Scholar 

  34. Brenner J (1972) The Hadamard maximum determinant problem. Am Math Mon 79(6):626–630

    Article  MathSciNet  Google Scholar 

  35. Luo Q, Wu SB, Wang LH et al (2018) Wavefront reconstruction by orthogonal polynomials in sparse subaperture region. Acta Photonica Sin 47(06):207–214

    Google Scholar 

  36. Pang BQ, Wang S, Yang P (2018) Wavefront reconstruction based on compressed modulation mode. Acta Opt Sin 38(09):35–42

    Google Scholar 

  37. Liu TS, Xie WQ, Zhu J (2014) Wavelet reconstruction of multiple wavefront distortions in inter satellite optical communication system. Intense Laser Particle Beam 26(10):127–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizheng Ke .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ke, X., Wu, P. (2022). Adaptive Control of Wavefront Distortion. In: Adaptive Optics Theory and Its Application in Optical Wireless Communication. Optical Wireless Communication Theory and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-7901-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7901-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7900-1

  • Online ISBN: 978-981-16-7901-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics