Skip to main content

Prions as Therapeutic Proteins and their Prospect as Drug Delivery Agent

  • Chapter
  • First Online:
Therapeutic Proteins Against Human Diseases

Abstract

Prions have been widely regarded as infectious proteins that are responsible for neurodegenerative diseases such as transmissible spongiform encephalopathy in humans and scrapie, bovine spongiform encephalopathy and chronic waste disease in animals. However, some research showed that the cellular form of prion protein (PrPc) has vital roles in cell-cell adhesion and in vivo intracellular signalling, with the possibility of participating in cellular communication in the brain, implying that non-infectious prions have beneficial roles in the cellular network. Moreso, recent studies have documented some therapeutic potentials of prions as active antimicrobial peptides and also capable of playing some roles in the innate and adaptive immunity against some viral infections. Aside from the therapeutic potential, prions also have some of the requirements that score them as good candidates in terms of delivering drugs. Peptide-based nanomaterials are currently being explored as drug delivery agents due to their ability to cross membrane barriers and reach the drug target site. The ability of prions to self-propagate is a common feature of drug delivery agents which can be explored in the form of peptide-based drug vehicles. Interestingly, prions have been reportedly explored for nanomaterials with a wide range of applications in biomedicine. In this chapter, recent and past research on prion proteins, their therapeutic activities and the likelihood of serving as vehicles for drug delivery are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alred EJ, Nguyen M, Martin M, Hansmann UHE (2017) Molecular dynamics simulations of early steps in RNA-mediated conversion of prions. Protein Sci 26:1524–1534

    Article  CAS  Google Scholar 

  • Baj A, Bettaccini A, Nishimura T, Onodera T, Toniolo A (2005) Poliovirus type 1 infection of murine PRNP-knockout neuronal cells. J Neurovirol 11:237–246

    Article  CAS  Google Scholar 

  • Bruce ME (1993) Scrapie strain variation and mutation. Br Med Bull 49:822–838

    Article  CAS  Google Scholar 

  • Busconi M, Fogher C (2010) Somatic cell mutations in cerebral tissue of cattle affected by bovine spongiform encephalopathy. Agric Sci 1(1):39–43

    CAS  Google Scholar 

  • Christopher M, Dobson CM (2001) The structural basis of protein folding an it’s link in human disease. Philos Trans R Soc Lond B Biol Sci 356:133–145

    Article  Google Scholar 

  • Díaz-Caballero M, Fernández MR, Ventura S (2018) Prion-based nanomaterials and their emerging applications. Prion 12(5–6):266–272. https://doi.org/10.1080/19336896.2018.1521235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng J, Zhao C, Ren J, Qu X (2010) Alzheimer’s disease amyloidbetaconvertingleft-handedZ-DNAbacktoright- handed B-form. Chem Commun (Camb) 46:7187–7189

    Article  CAS  Google Scholar 

  • Govaerts C et al (2004) Ecidence for assembly of prions with left-handed β-helices into trimers. Proc Natl Acad Sci U S A 101:8342–8347

    Article  CAS  Google Scholar 

  • Grassmann A, Wolf H, Hofmann J, Graham J, Vorberg I (2013) Cellular aspects of prion replication in vitro. Viruses 5(1):374–405. https://doi.org/10.3390/v5010374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam Y, Leach AG, Smith J, Pluchino S, Coxonl CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazili T (2020) Peptide based drug delivery systems to the brain. Nano Express 1:012002. https://doi.org/10.1088/2632-959X/ab9008

    Article  Google Scholar 

  • Korom M, Wylie KM, Wang H, Davis KL, Sangabathula MS, Delassus GS, Morrison LA (2013) A proautophagic antiviral role for the cellular prion protein identified by infection with a herpes simplex virus 1 ICP34.5 mutant. J Virol 87:5882–5894

    Article  CAS  Google Scholar 

  • Lathea R, Darlixc J (2017) Prion protein PRNP: A new player in innate immunity? The A-Beta connection. J Alzheimers Dis Rep 1:263–275. https://doi.org/10.3233/ADR-170037. IOS Press 263

    Article  Google Scholar 

  • Lathea R, Darlixc J (2020) Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 165(3):535–556. https://doi.org/10.1007/s00705-020-04529-2

    Article  CAS  Google Scholar 

  • Leblanc P, Baas D, Darlix JL (2004) Analysis of the inter- actions between HIV-1 and the cellular prion protein in a human cell line. J Mol Biol 337:1035–1051

    Article  CAS  Google Scholar 

  • Lötscher M, Recher M, Lang KS, Navarini A, Hunziker L, Santimaria R, Glatzel M, Schwarz P, Böni J, Zinkernagel RM (2007) Induced prion protein controls immune-activated retroviruses in the mouse spleen. PLoS One 2:e1158

    Article  Google Scholar 

  • Maddalena D, Caiati VF, Safiulina GF, Sudhir Sivakumaran GL, Cherubini E (2013) PrPC controls via protein kinase A the direction of synaptic plasticity in the immature hippocampus. J Neurosci 33(7):2973–2983. https://doi.org/10.1523/JNEUROSCI.4149-12.2013

    Article  CAS  Google Scholar 

  • Miles F, Beaux II, David NM, Kurt EG (2008) Utilization of solid nanomaterials for drug delivery. Expert Opin Drug Deliv 5(7):725–735

    Article  Google Scholar 

  • Muller WE, Pfeifer K, Forrest J, Rytik PG, Eremin VF, Popov SA, Schroder HC (1992) Accumulation of transcripts coding for prion protein in human astrocytes during infection with human immunodeficiency virus. Biochim Biophys Acta 1139:32–40

    Article  CAS  Google Scholar 

  • Nakamura Y, Sakudo A, Saeki K, Kaneko T, Matsumoto Y, Toniolo A, Itohara S, Onodera T (2003) Transfection of prion protein gene suppresses coxsackievirus B3 replica- tion in prion protein gene-deficient cells. J Gen Virol 84:3495–3502

    Article  CAS  Google Scholar 

  • Nandi PK, Leclerc E (1999) Polymerization of murine recombinant prion protein in nucleic acid solution. Arch Virol 144:1751–1763

    Article  CAS  Google Scholar 

  • Nasu-Nishimura Y, Taniuchi Y, Nishimura T, Sakudo A, Nakajima K, Ano Y, Sugiura K, Sakaguchi S, Ito-hara S, Onodera T (2008) Cellular prion protein prevents brain damage after encephalomyocarditis virus infection in mice. Arch Virol 153:1007–1012

    Article  CAS  Google Scholar 

  • Ogawa Y, Kawamura T, Matsuzawa T, Aoki R, Gee P, Yamashita A, Moriishi K, Yamasaki K, Koyanagi Y, Blau-velt A, Shimada S (2013) Antimicrobial peptide LL-37 produced by HSV-2-infected keratinocytes enhances HIV infection of Langerhans cells. Cell Host Microbe 13:77–86

    Article  CAS  Google Scholar 

  • Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23–35

    Article  CAS  Google Scholar 

  • Pammer J, Weninger W, Tschachler E (1998) Human keratinocytes express cellular prion-related protein in vitro and during inflammatory skin diseases. Am J Pathol 153:1353–1358

    Article  CAS  Google Scholar 

  • Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang ZH, Fleterrick RJ, Cohen FE (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90(23):10962–10966. https://doi.org/10.1073/pnas.90.23.10962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasupuleti M, Roupe M, Rydengard V, Surewicz K, Surewicz WK et al (2009) Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS One 4(10):e7358. https://doi.org/10.1371/journal.pone.0007358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paudyal, A. (2017). Polymorphysim in the PrPc prion protein gene in pigs. Master’s theses. 14. Fort Hays State University. https://scholars.fhsu.edu/theses/14

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383

    Article  CAS  Google Scholar 

  • Riesner D (2003) Biochemistry and structure of PrPC and PrPsc. Br Med Bull 66(1):21–33

    Article  CAS  Google Scholar 

  • Sakudo A, Xue G, Kawashita N, Ano Y, Takagi T, Shintani H, Tanaka Y, Onodera T, Ikuta K (2010) Structure of the prion protein and its gene: an analysis using Bioinfor- matics and computer simulation. Curr Protein Pept Sci 11:166–179

    Article  CAS  Google Scholar 

  • Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA (2004) Time-controlled transcardiac perfusion cross- linking for the study of protein interactions in complex tissues. Nat Biotechnol 22:724–731

    Article  CAS  Google Scholar 

  • Skinner PJ, Kim HO, Bryant D, Kinzel NJ, Reilly C et al (2015) Treatment of prion disease with heterologous prion proteins. PLoS One 10(7):e0131993. https://doi.org/10.1371/journal.pone.0131993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzhei mer’s disease-associated amyloid beta-protein is an antimicro-bial peptide. PLoS One 5:e9505

    Article  Google Scholar 

  • Varanko A, Saha S, Chilkoti A (2020) Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 156:133–187. https://doi.org/10.1016/j.addr.2020.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MR, Kandel R, Tripathi S, Condon DQL, Tauben-berger J, Hartshorn KL (2014) Alzheimer’s associated beta-amyloid protein inhibits influenza A virus and mod- ulates viral interactions with phagocytes. PLoS One 9:e101364

    Article  Google Scholar 

  • Wille H et al (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci U S A 99(6):3563–3568

    Article  CAS  Google Scholar 

  • Zhang CC, Steele AD, Lindquist S, Lodish HF (2006) Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci U S A 103:2184–2189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olorunfemi R. Molehin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molehin, O.R., Adebayo, A.A., Ohunayo, A.S., Oyeyemi, A.O., Okonkwo, J.O. (2022). Prions as Therapeutic Proteins and their Prospect as Drug Delivery Agent. In: Zahid Balouch, F.K. (eds) Therapeutic Proteins Against Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-7897-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7897-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7896-7

  • Online ISBN: 978-981-16-7897-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics