Skip to main content

Electrogenerated Chemiluminescence at Diamond Electrode

  • Chapter
  • First Online:
Diamond Electrodes

Abstract

Electrogenerated chemiluminescence (also known as electrochemiluminescence and abbreviated ECL) is a complex phenomenon of luminescence triggered by electrochemical reactions where the heterogeneous electron transfer, then ECL as consequence, is affected by the electrode materials which is crucial in the signal development and intensity. Among electrode materials, doped diamond electrodes are still underdeveloped for ECL application especially compared to the more commons noble metals and other carbon-based. After a brief and general introduction on electrochemiluminescence, this chapter will focus on several studies and developments of doped diamond electrodes by taking advantage on its own unique properties as the electrode for ECL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bard AJ (ed) (2004) Electrogenerated chemiluminescence. Marcel Dekker Inc, New York

    Google Scholar 

  2. Sojic N (ed) (2019) Analytical electrogenerated chemiluminescence: from fundamentals to bioassays. Royal Society of Chemistry, London

    Google Scholar 

  3. Hercules DM (1964) Chemiluminescence resulting from electrochemically generated species. Science 145:808–809

    Article  CAS  PubMed  Google Scholar 

  4. Visco RE, Chandross EA (1964) Electroluminescence in solutions of aromatic hydrocarbons. J Am Chem Soc 86:5350–5351

    Article  CAS  Google Scholar 

  5. Santhanam KSV, Bard AJ (1965) Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. J Am Chem Soc 87:139–140

    Article  CAS  Google Scholar 

  6. Marcus RA (1993) Electron transfer reaction in chemistry: theory and experiment. Angew Chem Int Ed Engl 32:1111–1121

    Article  Google Scholar 

  7. Fiorani A, Irkham VG et al (2019) Diamond electrode for electrogenerated chemiluminescence. In: Yang N, Zhao G, Foord J (eds) Nanocarbon electrochemistry. Willey, New York, pp 285–321

    Google Scholar 

  8. Marquette CA, Blum LJ (2008) Electro-chemiluminescent biosensing. Anal Bioanal Chem 390:155–168

    Article  CAS  PubMed  Google Scholar 

  9. Muzyka K (2014) Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron 54:393–407

    Article  CAS  PubMed  Google Scholar 

  10. Hu L, Xu G (2010) Application and trends in electrochemiluminescence. Chem Soc Rev 39:3275–3304

    Article  CAS  PubMed  Google Scholar 

  11. Zanut A, Fiorani A, Rebeccani S et al (2019) Electrochemiluminescence as emerging microscopy techniques. Anal Bioanal Chem 411:4375–4382

    Article  CAS  PubMed  Google Scholar 

  12. Hiramoto K, Villani E, Iwama T et al (2020) Recent advances in electrochemiluminescence-based systems for mammalian cell analysis. Micromachines 11:530–532

    Article  PubMed Central  Google Scholar 

  13. Fereja TH, Du F, Wang C et al (2020) Electrochemiluminescence imaging techniques for analysis and visualizing. J. Anal. Test. 4:76–91

    Article  Google Scholar 

  14. Zhang J, Arbault S, Sojic N et al (2019) Electrochemiluminescence imaging for bioanalysis. Annu Rev Anal Chem 12:275–295

    Article  CAS  Google Scholar 

  15. Valenti G, Fiorani A, Li H et al (2016) Essential role of electrode materials in electrochemiluminescence applications. ChemElectroChem 3:1990–1997

    Article  CAS  Google Scholar 

  16. Valenti G, Fiorani A, Villani E et al (2020). In: Sojic N (ed) Analytical electrogenerated chemiluminescence: from fundamentals to bioassays. Royal Society of Chemistry, London, pp 159–175

    Google Scholar 

  17. Fiorani A, Eßmann V, Santos CS et al (2020) Enhancing electrogenerated chemiluminescence on platinum electrodes through surface modification. ChemElectroChem 7:1256–1260

    Article  CAS  Google Scholar 

  18. Fiorani A, Merino JP, Zanut A et al (2019) Advanced carbon nanomaterials for elctrochemiluminescent biosensor applications. Curr Opin Electrochem 16:66–74

    Article  CAS  Google Scholar 

  19. Leland JK, Powell MJ (1990) Electrogenerated chemiluminescence: an oxidative-reduction type ECL reaction sequence using tripropyl amine. J Electrochem Soc 137:3127–3131

    Article  CAS  Google Scholar 

  20. Honda K, Yoshimura M, Rao TN et al (2003) Electrogenerated chemiluminescence of the ruthenium tris(2,2’)bipyridyl/amines system on a boron-doped diamond electrode. J Phys Chem B 107:1653–1663

    Article  CAS  Google Scholar 

  21. Sentic M, Virgilio F, Zanut A et al (2016) Microscopic imaing and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Anal Bioanal Chem 408:7085–7094

    Article  CAS  PubMed  Google Scholar 

  22. Miao W, Choi J, Bard AJ (2002) Electrogenerated chemiluminescence 69: The tris(2,2’-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited – A new route involving TPrA●+ cation radicals. J Am Chem Soc 124:14478–14485

    Article  CAS  PubMed  Google Scholar 

  23. Sentic M, Milutinovic M, Kanoufi F et al (2014) Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model system used in immunoassays. Chem Sci 4:2568–2572

    Article  Google Scholar 

  24. Zanut A, Fiorani A, Canola S et al (2020) Insights into the mechanism of coeractant electrogeneratedchemiluminescence facilitating enhanced bioanalytical performance. Nat Commun 11:2668–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamanaka Y, Miyamoto M, Tanaka Y et al (2008) Development of the direct modification method of the ruthenium complex on conductive diamond surfaces and the selective detection of bio-related materials. Electrochim Acta 53:5397–5408

    Article  CAS  Google Scholar 

  26. Honda K, Yamaguchi Y, Yamanaka Y et al (2005) Hydroxyl radical-related electrogenerated chemiluminescence reaction for a ruthenium tris(2,2’)bipyridyl/co-reactants system at boron-doped diamond electrodes. Electrochim Acta 51:588–597

    Article  CAS  Google Scholar 

  27. Macpherson JV (2015) A practical guide to using boron doped diamond in electrochemical research. Phys Chem Chem Phys 17:2935–2949

    Article  CAS  PubMed  Google Scholar 

  28. Pan S, Liu J, Hill CM (2015) Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy. J Phys Chem C 119:27095–27103

    Article  CAS  Google Scholar 

  29. Wilson AJ, Marchuk K, Willets KA (2015) Imaging electrogenerated chemiluminescence at single gold nanowire electrodes. Nano Lett 15:6110–6115

    Article  CAS  PubMed  Google Scholar 

  30. Valenti G, Scarabino S, Goudeau B et al (2017) Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis. J Am Chem Soc 139:16830–16837

    Article  CAS  PubMed  Google Scholar 

  31. Honda K, Noda T, Yoshimura M et al (2004) Microstructural heterogeneity for electrochemical activity in polycrystalline diamond thin films observed by electrogenerated chemiluminescence imaging. J Phys Chem B 108:16117–16127

    Article  CAS  Google Scholar 

  32. Marsellia B, Garcia-Gomez J, Michauda P-A Rodrigo et al (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:79−83

    Google Scholar 

  33. Fiorani A, Irkham et al (2018) Electrogenerated chemiluminescence with peroxydisulfate as a coreactant using boron doped diamond electrodes. Anal Chem 90:12959–12963

    Article  CAS  PubMed  Google Scholar 

  34. White HS, Bard AJ (1982) Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2’-bpy)32+-S2O82- system in acetonitrile-water solutions. J Am Chem Soc 104:6891–6895

    Article  CAS  Google Scholar 

  35. Yamazaki-Nishida S, Harima Y, Yamashita K (1990) Direct current electrogenerated chemiluminescence observed with [Ru(bpz)3]2+ in fully aqueous solution. Electroanal Chem Interfacial Electrochem 283:455–458

    Article  CAS  Google Scholar 

  36. Xu J, Huang P, Qin Y et al (2016) Analysis of intracellular glucose at single cells using electrochemiluminescence imaging. Anal Chem 88:4609–4612

    Article  CAS  PubMed  Google Scholar 

  37. Irkham, Fiorani A et al (2016) Co-reactant-on-demand ECL: electrogenerated chemiluminescence by the in situ production of S2O82– at boron-doped diamond electrodes. J Am Chem Soc 138:15636–15641

    Article  CAS  PubMed  Google Scholar 

  38. Khamis D, Mahé E, Dardoize F et al (2010) Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy. J Appl Electrochem 40:1829–1838

    Article  CAS  Google Scholar 

  39. Velazquez-Peña S, Sáez C, Cañizares P et al (2013) Production of oxidants via electrolysis of carbonate solutions with conductive-diamond anodes. Chem Eng J 230:272–278

    Article  Google Scholar 

  40. Tokel NE, Bard AJ (1972) Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris (2, 2'-bipyridine) ruthenium (II) dichloride. J Am Chem Soc 94:2862

    Google Scholar 

  41. Einaga Y (2010) Diamond electrodes for electrochemical analysis. J Appl Electrochem 40:1807–1816

    Article  CAS  Google Scholar 

  42. Fiaccabrino GC, Koudelka-Hep M, Hsueh YT et al (1998) Electrochemiluminescence of tris(2,2‘-bipyridine)ruthenium in water at carbon microelectrodes. Anal Chem 70:4157–4161

    Article  CAS  PubMed  Google Scholar 

  43. Choi JP, Bard AJ (2005) Electrogenerated chemiluminescence (ECL) 79. Reductive-oxidation ECL of tris(2,2′-bipyridine) ruthenium(II) using hydrogen peroxide as a coreactant in pH 7.5 phosphate buffer solution. Anal Chim Acta 541:143–150

    CAS  Google Scholar 

  44. Irkham, Valenti G et al (2020) electrogenerated chemiluminescence by in situ production of coreactant hydrogen peroxide in carbonate aqueous solution at a boron-doped diamond electrode. J Am Chem Soc 142:1518–1525

    Article  CAS  PubMed  Google Scholar 

  45. Irkham EY (2019) Oxidation of hydroxide ions in weak basic solutions using boron-doped diamond electrodes: effect of the buffer capacity. Analyst 144:4499–4504

    Article  CAS  PubMed  Google Scholar 

  46. Thostenson JO, Ngaboyamahina E, Sellgren KL et al (2017) Enhanced H2O2 production at reductive potentials from oxidized boron-doped ultrananocrystalline diamond electrodes. ACS Appl Mater Interfaces 9:16610–16619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin HB (1996) Hydrogen and oxygen evolution on boron-doped diamond electrodes. J Electrochem Soc 143:133–136

    Article  Google Scholar 

  48. Saha MS, Furuta T, Nishiki Y (2003) Electrochemical synthesis of sodium peroxycarbonate at boron-doped diamond electrodes. Electrochem Solid-State Lett 6:5–7

    Article  Google Scholar 

  49. Cui H, Zou G-Z, Lin X-Q (2003) Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal Chem 75:324–333

    Google Scholar 

  50. Sakura S (1992) Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode. Anal Chim Acta 262:49–57

    Article  CAS  Google Scholar 

  51. Garcia-Segura S, Centellas F, Brillas E (2012) Unprecedented electrochemiluminescence of luminol on a boron-doped diamond thin-film anode. enhancement by electrogenerated superoxide radical anion. J Phys Chem C 116:15500–15504

    Article  CAS  Google Scholar 

  52. Giussani A, Farahani P, Martínez-Muñoz D et al (2019) Molecular basis of the chemiluminescence mechanism of luminol. Chem Eur J 25:5202–5213

    Article  CAS  PubMed  Google Scholar 

  53. Merényi G, Lind J, Eriksen TEJ (1990) Luminol chemiluminescence: chemistry, excitation, emitter. Biolumin Chemilumin 5:53–56

    Article  Google Scholar 

  54. Baader WJ, Stevani CV, Bastos EL (2006) In the chemistry of peroxides, ed. Z. Rappoport, John Wiley & Sons Ltd, Chichester, pp 1211–1278

    Google Scholar 

  55. Irkham, Ivandini TA et al (2021) Electrogenerated chemiluminescence of luminol mediated by carbonate electrochemical oxidation at a boron-doped diamond. Anal Chem 93(4):2336–2341

    Google Scholar 

  56. Rose AL, Waite TD (2001) Chemiluminescence of luminol in the presence of iron(ii) and oxygen: oxidation mechanism and implications for its analytical use. Anal Chem 73:5909–5920

    Article  CAS  PubMed  Google Scholar 

  57. Lee J, Seliger HH (1972) Quantum yields of Luminol chemiluminescence reaction in aqueous and aprotic solvents. Photochem Photobiol 15:227–237

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irkham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irkham, Fiorani, A., Einaga, Y. (2022). Electrogenerated Chemiluminescence at Diamond Electrode. In: Einaga, Y. (eds) Diamond Electrodes. Springer, Singapore. https://doi.org/10.1007/978-981-16-7834-9_8

Download citation

Publish with us

Policies and ethics