Skip to main content

Boron-Doped Diamond Powder

  • Chapter
  • First Online:
Diamond Electrodes
  • 531 Accesses

Abstract

In this chapter, preparation of boron-doped diamond (BDDP) and its application to screen-printed electrodes and cathode catalyst supports were described. Screen-printed diamond electrodes using ink containing BDDP and polyester resin binder can be used as highly sensitive and disposable electrodes for electrochemical sensors, demonstrating sensitive detection of ciprofloxacin in artificial urine. Pt-supported BDDP is expected to be useful for a highly durable polymer electrolyte fuel cell cathode catalyst based on the corrosion resistance of BDDP to highly positive potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shakhov FM, Abyzov AM, Takai K (2017) Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature. J Solid State Chem 256:72–92. https://doi.org/10.1016/j.jssc.2017.08.009

    Article  CAS  Google Scholar 

  2. Heyer S, Janssen W, Turner S, Lu Y-G, Yeap WS, Verbeeck J, Haenen K, Krueger A (2014) Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8(6):5757–5764. https://doi.org/10.1021/nn500573x

    Article  CAS  PubMed  Google Scholar 

  3. Fischer AE, Swain GM (2005) Preparation and characterization of boron-doped diamond powder. J Electrochem Soc 152(9):B369. https://doi.org/10.1149/1.1984367

    Article  CAS  Google Scholar 

  4. Ay A, Swope VM, Swain GM (2008) The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond. J Electrochem Soc 155(10):B1013. https://doi.org/10.1149/1.2958308

    Article  CAS  Google Scholar 

  5. Kondo T, Nakajima K, Osasa T, Kotsugai A, Shitanda I, Hoshi Y, Itagaki M, Aikawa T, Tojo T, Yuasa M (2018) Effect of substrate size on the electrochemical properties of boron-doped diamond powders for screen-printed diamond electrode. Chem Lett 47(12):1464–1467. https://doi.org/10.1246/cl.180672

    Article  CAS  Google Scholar 

  6. Kondo T, Sakamoto H, Kato T, Horitani M, Shitanda I, Itagaki M, Yuasa M (2011) Screen-printed diamond electrode: a disposable sensitive electrochemical electrode. Electrochem Commun 13(12):1546–1549. https://doi.org/10.1016/j.elecom.2011.10.013

    Article  CAS  Google Scholar 

  7. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp(2)/sp(3) carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128(35):11635–11642. https://doi.org/Doi10.1021/Ja063303n

    Google Scholar 

  8. Matsunaga T, Kondo T, Osasa T, Kotsugai A, Shitanda I, Hoshi Y, Itagaki M, Aikawa T, Tojo T, Yuasa M (2020) Sensitive electrochemical detection of ciprofloxacin at screen-printed diamond electrodes. Carbon 159:247–254. https://doi.org/10.1016/j.carbon.2019.12.051

    Google Scholar 

  9. Albareda-Sirvent M, Merkoçi A, Alegret S (2000) Configurations used in the design of screen-printed enzymatic biosensors. Review Sens Actuat B Chem 69 (1):153–163. doi:https://doi.org/10.1016/S0925-4005(00)00536-0

    Google Scholar 

  10. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505. https://doi.org/10.1021/cr068069y

    Article  CAS  PubMed  Google Scholar 

  11. Tudorache M, Bala C (2007) Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal Bioanal Chem 388(3):565–578. https://doi.org/10.1007/s00216-007-1293-0

    Article  CAS  PubMed  Google Scholar 

  12. Darain F, Park S-U, Shim Y-B (2003) Disposable amperometric immunosensor system for rabbit IgG using a conducting polymer modified screen-printed electrode. Biosens Bioelectron 18(5):773–780. https://doi.org/10.1016/S0956-5663(03)00004-6

    Article  CAS  PubMed  Google Scholar 

  13. Shitanda I, Takamatsu S, Watanabe K, Itagaki M (2009) Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds. Electrochim Acta 54(21):4933–4936. https://doi.org/10.1016/j.electacta.2009.04.005

    Article  CAS  Google Scholar 

  14. Kondo T, Udagawa I, Aikawa T, Sakamoto H, Shitanda I, Hoshi Y, Itagaki M, Yuasa M (2016) Enhanced sensitivity for electrochemical detection using screen-printed diamond electrodes via the random microelectrode array effect. Anal Chem 88(3):1753–1759. https://doi.org/10.1021/acs.analchem.5b03986

    Article  CAS  PubMed  Google Scholar 

  15. Martin Santos A, Wong A, Araújo Almeida A, Fatibello-Filho O (2017) Simultaneous determination of paracetamol and ciprofloxacin in biological fluid samples using a glassy carbon electrode modified with graphene oxide and nickel oxide nanoparticles. Talanta 174:610–618. https://doi.org/10.1016/j.talanta.2017.06.040

    Article  CAS  PubMed  Google Scholar 

  16. Johnson AC, Keller V, Dumont E, Sumpter JP (2015) Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers. Sci Total Environ 511:747–755. https://doi.org/10.1016/j.scitotenv.2014.12.055

    Article  CAS  PubMed  Google Scholar 

  17. Wagenlehner FME, Wydra S, Onda H, Kinzig-Schippers M, Sörgel F, Naber KG (2003) Concentrations in Plasma, urinary excretion, and bactericidal activity of linezolid (600 Milligrams) versus those of ciprofloxacin (500 Milligrams) in healthy volunteers receiving a single oral dose. Antimicrob Agents Chemother 47(12):3789–3794. https://doi.org/10.1128/aac.47.12.3789-3794.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loft S, Vistisen K, Ewertz M, Tjønneland A, Overvad K, Poulsen HE (1992) Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. J Article 13(12):2241–2247

    CAS  Google Scholar 

  19. Kato D, Komoriya M, Nakamoto K, Kurita R, Hirono S, Niwa O (2011) Electrochemical determination of oxidative damaged DNA with high sensitivity and stability using a nanocarbon film. Anal Sci 27(7):703–707

    Article  CAS  Google Scholar 

  20. Wu LL, Chiou C-C, Chang P-Y, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339(1–2):1–9. https://doi.org/10.1016/j.cccn.2003.09.010

    Article  CAS  PubMed  Google Scholar 

  21. Yao Q-H, Mei S-R, Weng Q-F, Zhang P-d, Yang Q, Wu C-y, Xu G-W (2004) Determination of urinary oxidative DNA damage marker 8-hydroxy-2′-deoxyguanosine and the association with cigarette smoking. Talanta 63(3):617–623. https://doi.org/10.1016/j.talanta.2003.12.024

    Article  CAS  PubMed  Google Scholar 

  22. Kondo T, Horitani M, Sakamoto H, Shitanda I, Hoshi Y, Itagaki M, Yuasa M (2013) Screen-printed modified diamond electrode for glucose detection. Chem Lett 42(4):352–354. https://doi.org/10.1246/cl.121242

    Article  CAS  Google Scholar 

  23. Nantaphol S, Channon RB, Kondo T, Siangproh W, Chailapakul O, Henry CS (2017) Boron doped diamond paste electrodes for microfluidic paper-based analytical devices. Anal Chem 89(7):4100–4107. https://doi.org/10.1021/acs.analchem.6b05042

    Article  CAS  PubMed  Google Scholar 

  24. Nantaphol S, Kava AA, Channon RB, Kondo T, Siangproh W, Chailapakul O, Henry CS (2019) Janus electrochemistry: simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Anal Chim Acta 1056:88–95. https://doi.org/10.1016/j.aca.2019.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources 172(1):145–154. https://doi.org/10.1016/j.jpowsour.2007.07.048

    Article  CAS  Google Scholar 

  26. Wee J-H, Lee K-Y, Kim SH (2007) Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. J Power Sources 165(2):667–677. https://doi.org/10.1016/j.jpowsour.2006.12.051

    Article  CAS  Google Scholar 

  27. Roen LM, Paik CH, Jarvi TD (2004) Electrocatalytic corrosion of carbon support in PEMFC Cathodes. Electrochem Solid-State Lett 7(1):A19–A22. https://doi.org/10.1149/1.1630412

    Article  CAS  Google Scholar 

  28. Meyers JP, Darling RM (2006) Model of carbon corrosion in PEM fuel cells. J Electrochem Soc 153(8):A1432–A1442. https://doi.org/10.1149/1.2203811

    Article  CAS  Google Scholar 

  29. Tsukatsune T, Takabatake Y, Noda Z, Daio T, Zaitsu A, Lyth SM, Hayashi A, Sasaki K (2014) Platinum-Decorated tin oxide and niobium-doped tin oxide PEFC electrocatalysts: oxygen reduction reaction activity. J Electrochem Soc 161(12):F1208–F1213. https://doi.org/10.1149/2.0431412jes

    Article  CAS  Google Scholar 

  30. Shintani H, Kakinuma K, Uchida H, Watanabe M, Uchida M (2015) Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer. J Power Sources 280(Supplement C):593–599. doi:https://doi.org/10.1016/j.jpowsour.2015.01.132

  31. Berber MR, Hafez IH, Fujigaya T, Nakashima N (2015) A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Sci Rep 5:16711. https://doi.org/10.1038/srep16711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Preda L, Kondo T, Spataru T, Marin M, Radu M, Osiceanu P, Fujishima A, Spataru N (2017) Enhanced activity for methanol oxidation of platinum particles supported on iridium oxide modified boron-doped diamond powder. ChemElectroChem 4(8):1908–1915. https://doi.org/10.1002/celc.201700155

    Article  CAS  Google Scholar 

  33. Spătaru T, Kondo T, Anastasescu C, Balint I, Osiceanu P, Munteanu C, Spătaru N, Fujishima A (2017) Silica veils-conductive diamond powder composite as a new propitious substrate for platinum electrocatalysts. J Solid State Electrochem 21(4):1007–1014. https://doi.org/10.1007/s10008-016-3454-6

    Article  CAS  Google Scholar 

  34. Spătaru N, Calderon-Moreno JM, Osiceanu P, Kondo T, Terashima C, Popa M, Radu MM, Culiţă D, Preda L, Mihai MA, Spătaru T (2020) Conductive diamond powder inclusion in drop-casted graphene for enhanced effectiveness as electrocatalyst substrate. Chem Eng J 402:126258. https://doi.org/10.1016/j.cej.2020.126258

  35. Yano H, Kataoka M, Yamashita H, Uchida H, Watanabe M (2007) Oxygen reduction activity of carbon-supported Pt−M (M = V, Ni, Cr Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23(11):6438–6445. https://doi.org/10.1021/la070078u

    Article  CAS  PubMed  Google Scholar 

  36. Kondo T, Kikuchi M, Masuda H, Katsumata F, Aikawa T, Yuasa M (2018) Boron-doped diamond powder as a durable support for platinum-based cathode catalysts in polymer electrolyte fuel cells. J Electrochem Soc 165(6):F3072–F3077. https://doi.org/10.1149/2.0111806jes

    Article  CAS  Google Scholar 

  37. Binninger T, Fabbri E, Kötz R, Schmidt TJ (2014) Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J Electrochem Soc 161(3):H121–H128. https://doi.org/10.1149/2.055403jes

    Article  CAS  Google Scholar 

  38. Monzo J, van der Vliet DF, Yanson A, Rodriguez P (2016) Elucidating the degradation mechanism of the cathode catalyst of PEFCs by a combination of electrochemical methods and X-ray fluorescence spectroscopy. Phys Chem Chem Phys 18(32):22407–22415. https://doi.org/10.1039/C6CP03795J

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author appreciates the support of this work by KAKENHI (No. 26410246) grants from the Japan Society for the Promotion of Sciences (JSPS) , by Tokyo Ohka Foundation for the Promotion of Science and Technology, and by the Joint Usage/Research Program of the Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kondo, T. (2022). Boron-Doped Diamond Powder. In: Einaga, Y. (eds) Diamond Electrodes. Springer, Singapore. https://doi.org/10.1007/978-981-16-7834-9_7

Download citation

Publish with us

Policies and ethics