Skip to main content

In Vivo Real-Time Measurement of Drugs

  • Chapter
  • First Online:
Diamond Electrodes

Abstract

Drugs play a key role in the treatment of patients with various diseases. A compound, when administered systemically, shows differential spatial and temporal distribution patterns not only in the body but also within each organ. In response to an increase or decrease in local concentrations in the organ, the activity of the cell population expressing the drug’s target protein(s) changes over time. Therefore, real time, simultaneous detection of kinetics of the drug and its pharmacological effects in in vivo microenvironments is essential for evaluating the efficacy of medicines. Although such challenging dual-mode measurement has not yet been addressed by any conventional methods, it has been successfully achieved via a microsensing system that we recently developed. The system consists of two different sensors: a needle-type boron-doped diamond microelectrode for monitoring the drug and a glass microelectrode for tracking electrophysiological activity of the target cells. This state-of-the-art approach is applicable to various drugs in terms of “local” pharmacokinetic and pharmacodynamic assays in vivo and may contribute to the development of next-generation therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asai K, Yamamoto T, Nagashima S et al (2019) An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond. Analyst 145:544–549. https://doi.org/10.1039/c9an01976f

    Article  CAS  PubMed  Google Scholar 

  2. Békésy GV (1952) DC resting potentials inside the cochlear partition. J Acoust Soc Am 24:72–76. https://doi.org/10.1121/1.1906851

    Article  Google Scholar 

  3. Békésy GV (1952) Resting potentials inside the cochlear partition of the guinea pig. Nature 169:241–242. https://doi.org/10.1038/169241a0

    Article  Google Scholar 

  4. Chaurasia CS, Müller M, Bashaw ED et al (2007) AAPS-FDA workshop white paper: microdialysis principles, application, and regulatory perspectives. J Clin Pharmacol 47:589–603. https://doi.org/10.1177/0091270006299091

    Article  CAS  PubMed  Google Scholar 

  5. Davies DL, Lant AF, Millard NR et al (1974) Renal action, therapeutic use, and pharmacokinetics of the diuretic bumetanide. Clin Pharmacol Ther 15:141–155. https://doi.org/10.1002/cpt1974152141

    Article  CAS  PubMed  Google Scholar 

  6. Dufort S, Sancey L, Wenk C et al (2010) Optical small animal imaging in the drug discovery process. Biochimica Et Biophysica Acta Bba—Biomembr 1798:2266–2273. https://doi.org/10.1016/j.bbamem.2010.03.016

    Article  CAS  Google Scholar 

  7. Einaga Y, Kim G-S, Park S-G, Fujishima A (2001) A study of the crystalline growth of highly boron-doped CVD diamond: preparation of graded-morphology diamond thin films. Diam Relat Mater 10:306–311. https://doi.org/10.1016/s0925-9635(01)00375-2

    Article  CAS  Google Scholar 

  8. Ferguson BS, Hoggarth DA, Maliniak D et al (2013) Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Sci Transl Med 5:213ra165–213ra165. https://doi.org/10.1126/scitranslmed.3007095

  9. Frelin C, Chassande O, Lazdunski M (1986) Biochemical characterization of the Na+/K+/Cl− co-transport in chick cardiac cells. Biochem Bioph Res Co 134:326–331. https://doi.org/10.1016/0006-291x(86)90566-8

    Article  CAS  Google Scholar 

  10. Fujishima A, Einaga Y, Rao TN, Tryk DA (eds) (2005) Diamond electrochemistry, 1st edn. Elsevier Science

    Google Scholar 

  11. Hanawa A, Asai K, Ogata G et al (2018) Electrochemical measurement of lamotrigine using boron-doped diamond electrodes. Electrochim Acta 271:35–40. https://doi.org/10.1016/j.electacta.2018.03.112

    Article  CAS  Google Scholar 

  12. Hibino H, Nin F, Tsuzuki C, Kurachi Y (2009) How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflügers Archiv European J Physiology 459:521–533. https://doi.org/10.1007/s00424-009-0754-z

    Article  CAS  Google Scholar 

  13. Higashiyama K, Takeuchi S, Azuma H et al (2003) Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na+ transport. Hearing Res 186:1–9. https://doi.org/10.1016/s0378-5955(03)00226-0

    Article  CAS  Google Scholar 

  14. Hunt MJ, Garcia R, Large CH, Kasicki S (2008) Modulation of high-frequency oscillations associated with NMDA receptor hypofunction in the rodent nucleus accumbens by lamotrigine. Prog Neuro-psychopharmacology Biological Psychiatry 32:1312–1319. https://doi.org/10.1016/j.pnpbp.2008.04.009

    Article  CAS  Google Scholar 

  15. Lopez-Samblas AM, Adams JA, Goldberg RN, Modi MW (1997) The pharmacokinetics of bumetanide in the newborn infant. Neonatology 72:265–272. https://doi.org/10.1159/000244492

    Article  CAS  Google Scholar 

  16. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Gene Dev 17:545–580. https://doi.org/10.1101/gad.1047403

    Article  CAS  PubMed  Google Scholar 

  17. Ogata G, Ishii Y, Asai K et al (2017) A microsensing system for the in vivo real-time detection of local drug kinetics. Nat Biomed Eng 1:654–666. https://doi.org/10.1038/s41551-017-0118-5

    Article  CAS  PubMed  Google Scholar 

  18. Rizk M, Zou L, Savic R, Dooley K (2017) Importance of drug pharmacokinetics at the site of action. Clin Transl Sci 10:133–142. https://doi.org/10.1111/cts.12448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spãtaru N, Sarada BV, Popa E et al (2001) Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal Chem 73:514–519. https://doi.org/10.1021/ac000220v

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki A, Ivandini TA, Yoshimi K et al (2007) Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal Chem 79:8608–8615. https://doi.org/10.1021/ac071519h

    Article  CAS  PubMed  Google Scholar 

  21. Thalmann I, Comegys TH, Liu SZ et al (1992) Protein profiles of perilymph and endolymph of the guinea pig. Hearing Res 63:37–42. https://doi.org/10.1016/0378-5955(92)90071-t

    Article  CAS  Google Scholar 

  22. Walker MC, Tong X, Perry H et al (2000) Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Brit J Pharmacol 130:242–248. https://doi.org/10.1038/sj.bjp.0703337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hibino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogata, G., Sawamura, S., Asai, K., Kusuhara, H., Einaga, Y., Hibino, H. (2022). In Vivo Real-Time Measurement of Drugs. In: Einaga, Y. (eds) Diamond Electrodes. Springer, Singapore. https://doi.org/10.1007/978-981-16-7834-9_14

Download citation

Publish with us

Policies and ethics